Results 281 to 290 of about 1,104,307 (360)

Advances in Micro/Nanofiber‐Based Porous Materials for High‐Performance Thermal Insulation

open access: yesAdvanced Functional Materials, EarlyView.
Micro/nanofiber porous materials have engendered great interest in the thermal insulation field. Herein, the structural designs, fabrication techniques, and applications of the micro/nanofiber thermal insulation materials are systematically summarized.
Xiaobao Gong   +5 more
wiley   +1 more source

Facile Tri‐Metallic Catalyst Fabrication Using the Dynamic Hydrogen Bubble Template method

open access: yesAdvanced Functional Materials, EarlyView.
Porous metal catalysts are prepared using hydrogen bubbles as a natural template. By carefully selecting metal combinations and thermal treatment, the researchers tailored surface composition and structure, boosting catalytic performance. The approach offers a powerful and flexible route to designing advanced materials for green energy Abstract ...
Carlos M. S. Lobo   +11 more
wiley   +1 more source

Bright Monocompound Metal Halide Scintillator for Fast Neutron Radiography

open access: yesAdvanced Functional Materials, EarlyView.
Metal halide scintillator, tetraphenylphosphonium manganese bromide (TPP2MnBr4), provides a significant benefit for fast neutron imaging. A fourfold increase in efficiency over traditional zinc sulfide screens is achieved by efficiently utilizing neutron interactions within its homogeneous structure.
Aditya Bhardwaj   +13 more
wiley   +1 more source

Next‐Generation Bio‐Reducible Lipids Enable Enhanced Vaccine Efficacy in Malaria and Primate Models

open access: yesAdvanced Functional Materials, EarlyView.
Structure–activity relationship (SAR) optimization of bio‐reducible ionizable lipids enables the development of highly effective lipid nanoparticle (LNP) mRNA vaccines. Lead LNPs show superior tolerability and antibody responses in rodents and primates, outperforming approved COVID‐19 vaccine lipids.
Ruben De Coen   +30 more
wiley   +1 more source

Polaronic and Electrochemical Signatures in Group IVB (Ti, Zr, Hf) Oxides: Unified SKP–DFT Insights for Tunable Transport in Energy and Electronic Devices

open access: yesAdvanced Functional Materials, EarlyView.
Charge carrier concentration and mobility in TiO2, ZrO2, and HfO2 powder films are experimentally mapped as a function of temperature. The results uncover polaron‐mediated transport regimes and field‐activated conduction, enabling the design of oxide‐based electronic and energy devices with thermally tunable functionality.
Beatriz Moura Gomes   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy