Results 211 to 220 of about 509,322 (292)
B. Erath, M. Zañartu, S. Peterson
semanticscholar +1 more source
Study on the Energy Evolution Mechanism and Fractal Characteristics of Coal Failure under Dynamic Loading. [PDF]
Lin H +5 more
europepmc +1 more source
Coagulative granular hydrogels are composed of packed thrombin‐functionalized microgels that catalyze the conversion of fibrinogen into a secondary fibrin network, filling the interstitial voids. This bio‐inspired approach stabilizes the biomaterial to match the robustness of bulk hydrogels without compromising injectability, mimicking the initial ...
Zhipeng Deng +16 more
wiley +1 more source
Evolution mechanism of deformation and failure energy in composite rock mass with structural planes of different inclinations. [PDF]
Yuan Z, Zhang D, Dong X.
europepmc +1 more source
This study introduces an innovative approach to treating intervertebral disc degeneration using ultrasound‐triggered in situ hydrogel formation. Proof‐of‐concept experiments using optimized biomaterial and ultrasound parameters demonstrate partial restoration of biomechanical function and successful integration into degenerated disc tissue, offering a ...
Veerle A. Brans +11 more
wiley +1 more source
Multi-Objective Optimization of the Crashworthiness of Aluminum Circular Tubes with Graded Thicknesses. [PDF]
Ren J, Liu S, Dong X, Zhao C.
europepmc +1 more source
Design rules are presented to control intestinal organoid polarity in fully synthetic hydrogels. The laminin‐derived IKVAV sequence is crucial to obtain correct intestinal organoid polarity. Increasing hydrogel dynamics further supports the growth of correctly polarized intestinal organoids, while a bulk level of stiffness (G’ ≈ 0.7 kPa) is crucial to ...
Laura Rijns +10 more
wiley +1 more source
Structural performance of UHPC-columns reinforced with basalt bars under cyclic loading. [PDF]
El-Sayed TA +3 more
europepmc +1 more source
Bioprinting Organs—Science or Fiction?—A Review From Students to Students
Bioprinting artificial organs has the potential to revolutionize the medical field. This is a comprehensive review of the bioprinting workflow delving into the latest advancements in bioinks, materials and bioprinting techniques, exploring the critical stages of tissue maturation and functionality.
Nicoletta Murenu +18 more
wiley +1 more source
This study presents a highly sensitive, oxidation‐resistant, biocompatible, and degradable Janus piezoresistive electronic skin for sustainable wearable electronics. The electronic skin exhibits sensitive and stable response across a broad pressure range, exceptional oxidation resistance, and Janus wettability.
Joon Kim +5 more
wiley +1 more source

