Results 221 to 230 of about 159,147 (289)

Decoupling Size and Electronic Effects in Doped SrTiO3 Photocatalysts Through Surface Area–Normalized CO2 Hydrogenation Rates

open access: yesAdvanced Functional Materials, EarlyView.
Exploring the photocatalytic reverse water–gas shift (RWGS) reaction on doped SrTiO3 nanoparticle films, reveals that normalizing catalytic rates by the catalyst's specific surface area (SSA) disentangled surface area effects from the catalyst's intrinsic material properties.
Dikshita Bhattacharyya   +6 more
wiley   +1 more source

Trace element-dictated exosome modules and self-adaptive dual-network hydrogel orchestrate diabetic foot regeneration through complement-mitochondria-autophagy circuitry. [PDF]

open access: yesMil Med Res
Wang SQ   +13 more
europepmc   +1 more source

Biomimetic Iridescent Skin: Robust Prototissues Spontaneously Assembled from Photonic Protocells

open access: yesAdvanced Functional Materials, EarlyView.
Uniform nanoparticles are induced to form arrays (photonic crystals) in the cores of biopolymer capsules, endowing these ‘protocells’ with structural color. These protocells are then assembled into large self‐standing objects, i.e., prototissues, with robust mechanical properties as well as iridescent optical properties.
Medha Rath   +6 more
wiley   +1 more source

An international literature-based dataset on metallic trace element contamination in kitchen garden plants. [PDF]

open access: yesSci Data
Genies L   +7 more
europepmc   +1 more source

Trace elements.

open access: yesThe Western journal of medicine, 1978
openaire   +1 more source

Tunable Coordination Number in Non‐Metal‐Introduced Copper Catalysts Enables High‐Performance Electrochemical CO2 Reduction to C2 Products

open access: yesAdvanced Functional Materials, EarlyView.
Copper catalysts introduced with different non‐metallic elements regulating the coordination number of Cu are prepared by magnetron sputtering. Reducing the Cu coordination number enhances C─C coupling and boosts C2+ product selectivity, by lowering the energy barrier for the *CO → *CHO conversion step. The optimized Si‐doped Cu catalyst achieves a C2+
Xiaoye Du   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy