Results 271 to 280 of about 1,428,251 (379)

Laser‐Induced Graphene from Waste Almond Shells

open access: yesAdvanced Functional Materials, EarlyView.
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova   +9 more
wiley   +1 more source

Biomass Native Structure Into Functional Carbon‐Based Catalysts for Fenton‐Like Reactions

open access: yesAdvanced Functional Materials, EarlyView.
This study indicates that eight biomasses with 2D flaky and 1D acicular structures influence surface O types, morphology, defects, N doping, sp2 C, and Co nanoparticles loading in three series of carbon, N‐doped carbon, and cobalt/graphitic carbon. This work identifies how these structural factors impact catalytic pathways, enhancing selective electron
Wenjie Tian   +7 more
wiley   +1 more source

Next‐Generation Bio‐Reducible Lipids Enable Enhanced Vaccine Efficacy in Malaria and Primate Models

open access: yesAdvanced Functional Materials, EarlyView.
Structure–activity relationship (SAR) optimization of bio‐reducible ionizable lipids enables the development of highly effective lipid nanoparticle (LNP) mRNA vaccines. Lead LNPs show superior tolerability and antibody responses in rodents and primates, outperforming approved COVID‐19 vaccine lipids.
Ruben De Coen   +30 more
wiley   +1 more source

Biosupercapacitors for Human‐Powered Electronics

open access: yesAdvanced Functional Materials, EarlyView.
Biosupercapacitors are emerging as biocompatible and integrative energy systems for next‐generation bioelectronics, offering rapid charge–discharge performance and mechanical adaptability. This review systematically categorizes their applications from external to organ‐level systems and highlights their multifunctional roles in sensing, actuation, and ...
Suhyeon Kim   +7 more
wiley   +1 more source

Removal of Steroid Hormone Micropollutants by an Electrochemical Carbon Nanotube Membrane Flow‐Through Reactor: Role of Concentration and Degradation Mechanisms

open access: yesAdvanced Functional Materials, EarlyView.
A flow‐through electrochemical membrane reactor equipped with a carbon nanotube membrane eliminates the mass transfer limitation, achieving removals >97.5% for steroid hormone (SH) micropollutants through electrochemical adsorption and degradation, over a broad initial concentration varying from 50 to 106 ng L−1.
Siqi Liu   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy