Results 171 to 180 of about 6,438,052 (326)

High‐Rate FA‐Based Co‐Evaporated Perovskites: Understanding Rate Limitations and Practical Considerations to Overcome Their Impact

open access: yesAdvanced Functional Materials, EarlyView.
Vacuum‐based deposition is promising for perovskite solar cells to be successfully commercialized. However, co‐evaporation, the most common vapor phase deposition technique, suffers from very low deposition rates. In this work, we reveal that high deposition rates can lead to carbon flakes depositing into the perovskite absorber layers due to material ...
Thomas Feeney   +13 more
wiley   +1 more source

Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications

open access: yesAdvanced Functional Materials, EarlyView.
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner   +9 more
wiley   +1 more source

Implementation Strategy for an Education Value Unit System in Emergency Medicine at The Ohio State University. [PDF]

open access: yesJ Am Coll Emerg Physicians Open
Hunold KM   +11 more
europepmc   +1 more source

Overcoming the Stability Issue for Hydrophobic Hole Transporting Layers Utilized in Tin‐Lead Perovskite and Tandem Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
A non‐annealed process is developed for non‐PEDOT:PSS inverted tin‐lead perovskite solar cells to attain PCE 22.67% for the PTAA‐based device. When PTAA is applied in an all‐perovskite tandem solar cell, a record efficiency of 28.14% is obtained with great stability for the efficiency maintaining 96% of its original value for 500 h under one‐sun ...
Chun‐Hsiao Kuan   +12 more
wiley   +1 more source

Object detection and tracking basics: Student education

open access: gold, 2019
Izabella Y. Merkulova   +3 more
openalex   +1 more source

Atomic‐Level Dual‐Cation Engineering Enables High‐Performance Na4VMn(PO4)3 Cathodes for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Dual‐cation site engineering unlocks stable and fast sodium storage in Na4VMn(PO4)3 cathodes. Li+ at Na2 suppresses Jahn‐Teller distortion, while K+ at Na1 expands ion channels, enabling synchronized V/Mn redox and quasi‐single‐phase kinetics. This atomic‐level strategy achieves ultralong cycling stability, high‐rate capability, and full cell viability
Jiaze Sun   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy