Results 171 to 180 of about 579,480 (344)

Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics

open access: yesAdvanced Functional Materials, EarlyView.
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha   +18 more
wiley   +1 more source

Purcell‐Enhanced Spectrally Precise Emission in Dual‐Microcavity Organic Light‐Emitting Diodes

open access: yesAdvanced Functional Materials, EarlyView.
Spectrally precise emission from broadband organic light‐emitting diodes is realized via a dual‐microcavity strategy. This architecture achieves narrowband emission (full width at half maximum, FWHM = 21 nm) with ultrapure color approaching BT.2020 by enhancing the Purcell effect via coupling of excitons with dual‐microcavity resonance.
Jun Yong Kim   +3 more
wiley   +1 more source

Mechanotransducing Organic Electrochemical Diode for Crosstalk‐Inhibited Artificial Skin

open access: yesAdvanced Functional Materials, EarlyView.
An innovative approach is presented to a stretchable mechanotransducing diode that unifies rectification and tactile‐sensing functionality. This approach enables to fabricate the diode that maintains a large rectification ratio (5 × 102) at a high operational frequency (100 Hz).
Taeyeong Kim   +7 more
wiley   +1 more source

Synchronized Electro‐Chromo‐Emissive Devices Using a Mixed Ionic‐Electronic Conductive Layer for XR Applications

open access: yesAdvanced Functional Materials, EarlyView.
A single cell type Electro‐chromo‐emissive (ECECL) device integrating synchronized electrochromic (EC) and electrochemiluminescent (ECL) functions is developed using a mixed ionic‐electronic conductor (MIEC). A MIEC layer reduces ionic/electronic resistance, enabling ultrafast switching and enhanced optical contrast.
Hwandong Jang   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy