Results 81 to 90 of about 168 (167)
Beyond Order: Perspectives on Leveraging Machine Learning for Disordered Materials
This article explores how machine learning (ML) revolutionizes the study and design of disordered materials by uncovering hidden patterns, predicting properties, and optimizing multiscale structures. It highlights key advancements, including generative models, graph neural networks, and hybrid ML‐physics methods, addressing challenges like data ...
Hamidreza Yazdani Sarvestani+4 more
wiley +1 more source
This study explores aerosol jet‐printed (AJP) surface roughness, its effects on the performance of microwave electronics, and its process contributors. First, an electromagnetic model is vetted for AJP's unique roughness signature. Simulations are built which show process‐induced roughness is as significant as conductor resistivity in driving microwave
Christopher Areias, Alkim Akyurtlu
wiley +1 more source
This study focuses on synthesizing equiatomic AlCuNiSi medium‐entropy alloys using mechanical alloying for advanced industrial applications. Continuous milling leads to grain refinement and the formation of stable BCC/FCC solid‐solution phases, resulting in enhanced mechanical properties. A unique Si‐rich solid‐solution phase is observed, which did not
Mustafa Okumuş+2 more
wiley +1 more source
This article presents the development of Fe‐Mn‐Zn nanocrystalline alloys (0–9 wt% Zn) by mechanical alloying and subsequently hot pressing. Their microstructure, density, hardness, wear resistance, corrosion behavior, and antibacterial properties are systematically examined.
Ilker Emin Dag+3 more
wiley +1 more source
This study presents the development and characterization of injectable nanocomposite hydrogels based on N‐succinyl chitosan, oxidized guar gum, and bacterial cellulose nanofibers. Emphasizing enhanced mechanical properties and biocompatibility, the hydrogels exhibit fast gelation, improved structural integrity, and reduced swelling. Their potential for
Raimundo Nonato Fernandes Moreira Filho+8 more
wiley +1 more source
Shape Memory Polymer‐Based Hook‐and‐Loop Fastener for Robust Bonding and on‐Demand Easy Separation
A 3D shape memory polymer‐based hook‐and‐loop fastener, fabricated using projection microstereolithography and molding, offers tunable bonding strength through temperature control. When heated from 25 to 70 °C, the fastener softens and deforms easily, reducing bonding strength by 20‐fold for on‐demand easy separation.
Chen Yang+5 more
wiley +1 more source
Recent Progress on 2D‐Material‐Based Smart Textiles: Materials, Methods, and Multifunctionality
Advancements in 2D‐material‐integrated smart textiles are reviewed, with a focus on materials, fabrication methods, and multifunctional applications, including energy harvesting, monitoring, EMI shielding, energy storage, and thermal management. The discussion addresses key challenges and provides insights into the future development of next‐generation
Yong Choi+5 more
wiley +1 more source
Performance Comparison of Surface Sensitizers for Diode Laser Powder Bed Fusion of Polyamide 12
Laser‐generated nanoparticles transform standard PA12 powders into high‐performance, dye‐free feedstocks for diode laser 3D printing. Despite identical absorbance at 808 nm, CuS, LaB6, and CB coatings reveal striking differences in fusion and strength—unlocking new design space for recyclable, industrial‐grade polymers.
Michael Willeke+9 more
wiley +1 more source
3D Bioprinting of Thick Adipose Tissues with Integrated Vascular Hierarchies
An advanced 3D bioprinting technique is used here to create thick adipose tissues with a central, vessel and extensive branching. The construct is made using alginate, gelatin and collagen‐based bioinks. Flow through the complex vessel network is demonstrated as well as its successful integration with a femoral artery following implantation in a rat ...
Idit Goldfracht+5 more
wiley +1 more source