Results 271 to 280 of about 1,159,549 (323)

Biomass Native Structure Into Functional Carbon‐Based Catalysts for Fenton‐Like Reactions

open access: yesAdvanced Functional Materials, EarlyView.
This study indicates that eight biomasses with 2D flaky and 1D acicular structures influence surface O types, morphology, defects, N doping, sp2 C, and Co nanoparticles loading in three series of carbon, N‐doped carbon, and cobalt/graphitic carbon. This work identifies how these structural factors impact catalytic pathways, enhancing selective electron
Wenjie Tian   +7 more
wiley   +1 more source

Substrate Stress Relaxation Regulates Cell‐Mediated Assembly of Extracellular Matrix

open access: yesAdvanced Functional Materials, EarlyView.
Silicone‐based viscoelastic substrates with tunable stress relaxation reveal how matrix mechanics regulates cellular mechanosensing and cell‐mediated matrix remodelling in the stiff regime. High stress relaxation promotes assembly of fibronectin fibril‐like structures, increased nuclear localization of YAP and formation of β1 integrin‐enriched ...
Jonah L. Voigt   +2 more
wiley   +1 more source

Removal of Steroid Hormone Micropollutants by an Electrochemical Carbon Nanotube Membrane Flow‐Through Reactor: Role of Concentration and Degradation Mechanisms

open access: yesAdvanced Functional Materials, EarlyView.
A flow‐through electrochemical membrane reactor equipped with a carbon nanotube membrane eliminates the mass transfer limitation, achieving removals >97.5% for steroid hormone (SH) micropollutants through electrochemical adsorption and degradation, over a broad initial concentration varying from 50 to 106 ng L−1.
Siqi Liu   +2 more
wiley   +1 more source

Concept of Trusted Transaction for Secure Cloud Transactions

open access: green, 2016
Taufeeq Mohammed   +2 more
openalex   +1 more source

CO2 Reduction on Copper‐Nitrogen‐Doped Carbon Catalysts Tuned by Pulsed Potential Electrolysis: Effect of Pulse Potential

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy