Results 31 to 40 of about 14,897 (301)
Biomaterial Strategies for Targeted Intracellular Delivery to Phagocytes
Phagocytes are essential to a functional immune system, and their behavior defines disease outcomes. Engineered particles offer a strategic opportunity to target phagocytes, harnessing inflammatory modulation in disease. By tuning features like size, shape, and surface, these systems can modulate immune responses and improve targeted treatment for a ...
Kaitlyn E. Woodworth+2 more
wiley +1 more source
Effect of high frequency transcutaneous electrical nerve stimulation on viability of random skin flap in rats [PDF]
PURPOSE: To determine the effect of high frequency Transcutaneous Electrical Nerve Stimulation (TENS) on viability of random skin flap in rats. METHODS: The sample of this study was 75 Wistar rats.
Richard Eloin Liebano+2 more
doaj +1 more source
Transcutaneous Electrical Nerve Stimulation (TENS) for fibromyalgia in adults [PDF]
Fibromyalgia is characterised by persistent, widespread pain; sleep problems; and fatigue. Transcutaneous electrical nerve stimulation (TENS) is the delivery of pulsed electrical currents across the intact surface of the skin to stimulate peripheral nerves and is used extensively to manage painful conditions.
Mark I. Johnson+4 more
openaire +5 more sources
This article summarizes significant technological advancements in materials, photonic devices, and bio‐interfaced systems, which demonstrate successful applications for impacting human healthcare via improved therapies, advanced diagnostics, and on‐skin health monitoring.
Seunghyeb Ban+5 more
wiley +1 more source
Background: Abdominal pain due to menses (primary dysmenorrhea) is an extremely pervasive and debilitating symptom affecting up to 90% of menstruating individuals. Objective: The objective of this randomized control trial was to investigate the effect of
Bailey McLagan+6 more
doaj +1 more source
This review highlights recent progress in piezoelectric materials for regenerative medicine, emphasizing their ability to convert mechanical stimuli into bioelectric signals that promote tissue repair. Key discussions cover the intrinsic piezoelectric properties of biological tissues, co‐stimulation cellular mechanisms for tissue regeneration, and ...
Xinyu Wang+3 more
wiley +1 more source
Photonic Nanomaterials for Wearable Health Solutions
This review discusses the fundamentals and applications of photonic nanomaterials in wearable health technologies. It covers light‐matter interactions, synthesis, and functionalization strategies, device assembly, and sensing capabilities. Applications include skin patches and contact lenses for diagnostics and therapy. Future perspectives emphasize AI‐
Taewoong Park+3 more
wiley +1 more source
Stimuli‐Responsive Materials for Biomedical Applications
Stimulus‐responsive materials (SRMs) hold great promise for use in a wide range of biomedical applications. This review covers four stimulus modalities, namely, electrical, optical, magnetic, and ultrasound, and their associated SRMs. It provides a summary of the materials in each modality, their development, and current research perspectives.
Adriana Teixeira do Nascimento+8 more
wiley +1 more source
Biopolymer Membranes for Osmotic Power Generation in Bionic Applications
This review provides an overview of biopolymer‐based osmotic power generation for bionic applications. It uniquely bridges biopolymer membranes, reverse electrodialysis(RED), and bionic applications, addressing a critical research gap by integrating biopolymer membranes with RED technologies for biomedical use.
Changchun Yu+6 more
wiley +1 more source
This review focuses on the application of synthetic biodegradable microarray patches (MAPs) in sustained drug delivery. Compared to conventional MAPs which release drugs into the skin in an immediate manner, these implantable MAPs release drugs into skin microcirculation gradually as the biodegradable polymers degrade, thus offering sustained release ...
Li Zhao+6 more
wiley +1 more source