Results 111 to 120 of about 92,393 (340)
Reference Energies for Valence Ionizations and Satellite Transitions
Journal of Chemical Theory and ComputationUpon ionization of an atom or a molecule, another electron (or more) can be simultaneously excited. These concurrently generated states are called "satellites" (or shake-up transitions) as they appear in ionization spectra as higher-energy peaks with weaker intensity and larger width than the main peaks associated with single-particle ionizations ...Marie, Antoine, Loos, Pierre-Françoisopenaire +3 more sourcesSynchrotron Radiation for Quantum Technology
Advanced Functional Materials, EarlyView.Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.Oliver Rader, Sakura Pascarelli, Klaus Attenkofer, Anna A. Makarova, Karsten Holldack, Kai Rossnagel, Kristiaan Temst, George Kourousias, Stefano Carretta, Caterina Biscari, Helmut Dosch +10 morewiley +1 more sourceCoRoT's first seven planets: An overview
, 2010 The up to 150 day uninterrupted high-precision photometry of about 100000
stars - provided so far by the exoplanet channel of the CoRoT space telescope -
gave a new perspective on the planet population of our galactic neighbourhood.Barge, P., Dvorak, R., Lammer, H., Schneider, J., team, the CoRoT, Wuchterl, G. +5 morecore +2 more sourcesEnhancing Low‐Temperature Performance of Sodium‐Ion Batteries via Anion‐Solvent Interactions
Advanced Functional Materials, EarlyView.DOL is introduced into electrolytes as a co‐solvent, increasing slat solubility, ion conductivity, and the de‐solvent process, and forming an anion‐rich solvent shell due to its high interaction with anion. With the above virtues, the batteries using this electrolyte exhibit excellent cycling stability at low temperatures. Abstract
Sodium‐ion batteries Cheng Zheng, Qian Yao, Yanan Sun, Hongyu Lv, Zhongchao Bai, Guoliang Zhang, Nana Wang, Jian Yang +7 morewiley +1 more sourceTOI-481 b and TOI-892 b: Two Long-period Hot Jupiters from the Transiting Exoplanet Survey Satellite
, 2023 Rafael Brahm, Louise D. Nielsen, R.A. Wittenmyer, S. Wang, Joseph E. Rodriguez, Néstor Espinoza, M. I. Jones, Andrés Jordán, Thomas Henning, Mélissa J. Hobson, D. Kossakowski, Felipe Rojas, P. Sarkis, Martin Schlecker, Trifon Trifonov, S. Shahaf, G. Ricker, R. Vanderspek, D.W. Latham, Sara Seager, Joshua N. Winn, Jon M. Jenkins, B.C. Addison, G. Á. Bakos, W. Bhatti, Daniel Bayliss, P. Berlind, Allyson Bieryla, F. Bouchy, B.P. Bowler, César Briceño, Timothy M. Brown, E.M. Bryant, Douglas A. Caldwell, David Charbonneau, Karen A. Collins, Allen B. Davis, Gilbert A. Esquerdo, Benjamin J. Fulton, N.M. Guerrero, Christopher E. Henze, Aleisha Hogan, Jonathan Horner, Chelsea X. Huang, Jonathan Irwin, Stephen R. Kane, John F. Kielkopf, Andrew W. Mann, T. Mazeh, J. McCormac, C. McCully, M.W. Mengel, Ismael Mireles, Jack Okumura, Peter Plavchan, Samuel N. Quinn, M. Rabus, S. Saesen, Joshua E. Schlieder, D. Ségransan, Bernie Shiao, Avi Shporer, Robert J. Siverd, Keivan G. Stassun, V. Suc, Thiam-Guan Tan, P. Torres, C. G. Tinney, S. Udry, L. Vanzi, M. Vezie, J. I. Vines, M. Vučković, D. J. Wright, D.A. Yahalomi, A. Zapata, H. Zhang, C. Ziegler +77 moreopenalex +1 more sourceUnlocking Ultra‐Long Cycle Stability of Li Metal Electrode by Separators Modified by Porous Red Phosphorus Nanosheets
Advanced Functional Materials, EarlyView.Coating the standard polypropylene separator with a porous red phosphorous nanosheet greatly improves cycling performance in Li electrode cells. The phosphorus‐based surface chemistry deactivates electrolyte solvent decomposition and enhances the cleavage of F‐containing salt, resulting in an inorganic‐dominated electrolyte interphase (SEI) composition Jiangpeng Wang, Mingzi Sun, Feng Lang, Zhijun Cai, Xitao Hu, Yao Gao, Chao Lin, Xueqiang Zhang, Bolong Huang, Quan Li +9 morewiley +1 more sourceAnthropogenic Space Weather
, 2017 Anthropogenic effects on the space environment started in the late 19th
century and reached their peak in the 1960s when high-altitude nuclear
explosions were carried out by the USA and the Soviet Union.A. Finkbeiner, A. Karinen, A.B. Hassam, A.C. Dickieson, A.C. Durney, A.C. Durney, A.C. Fraser-Smith, A.C. Fraser-Smith, A.C. Fraser-Smith, A.J. Smith, A.J. Zmuda, A.L. Cullington, A.L. Vampola, A.L. Vampola, A.N. Jaynes, A.V. Streltsov, B. Abel, B.H. Mauk, B.J. O’Brien, B.J. O’Brien, B.T. Tsurutani, B.T. Tsurutani, C.A. Kletzing, C.E. McIlwain, C.E. McIlwain, C.G. Park, C.G. Park, C.J. Rodger, C.S. Roberts, D. Carpenter, D.J. Kessler, D.J. Williams, D.L. Carpenter, D.L. Carpenter, D.L. Reasoner, D.M. Chapin, D.N. Baker, D.N. Baker, D.N. Baker, D.P. Miles, G. Haerendel, G. Klawitter, G. Xin, G.F. Pieper, G.F. Pieper, G.F. Pieper, H. Elliot, H. Elliot, H. Klinkrad, H. Maeda, H.A. Bomke, H.A. Bomke, H.C. Koons, J. Leiphart, J. Roquet, J. Wait, J.-A. Sauvaud, J.A. Allen Van, J.A. Allen Van, J.A. Allen Van, J.A. Allen Van, J.A. Allen Van, J.A. Allen Van, J.A. Allen Van, J.A. Allen Van, J.A. Allen Van, J.A. Allen Van, J.A. Lawrie, J.A. Sauvaud, J.B. Harold, J.C. Foster, J.C. Foster, J.F. Fennell, J.F. Fennell, J.F. Gabites, J.L. Green, J.P. Luette, J.S. Mayo, K. Bullough, K. Papadopoulos, K. Rastani, K.A. Zawdie, K.G. McKay, L. Allen, L. Biermann, M. Casaverde, M. Mendillo, M. Mendillo, M. Parrot, M. Parrot, M. Parrot, M. Parrot, M. Walt, M. Walt, M.A. Clilverd, M.B. Cohen, M.F. Larsen, M.J. Starks, M.J. Starks, N. Christofilos, N.C. Christofilos, O. Molchanov, P. Dyal, P. Kulkarni, P.A. Bernhardt, P.A. Bernhardt, P.A. Bernhardt, P.J. Edwards, P.J. Kellogg, P.R. Pisharoty, R. Helliwell, R. Lüst, R. Raghuram, R.A. Helliwell, R.A. Helliwell, R.A. Helliwell, R.A. Helliwell, R.B. Horne, R.C. Baker, R.C. Moore, R.E. Fischell, R.E. Fischell, R.G. D’Arcy, R.J. Danchik, R.L. Heyborne, R.L. Smith, R.R. Meier, R.R. Scarabucci, R.R. Unterberger, S. Breiner, S.A. Colgate, S.B. Mende, S.L. Kahalas, S.M. Krimigis, T. Pedersen, T.F. Bell, T.R. Pedersen, U.S. Inan, U.S. Inan, U.S. Inan, U.S. Inan, U.S. Inan, U.S. Inan, U.S. Inan, V.S. Sonwalkar, V.S. Sonwalkar, W. Rosenzweig, W.J. Karzas, W.K. Berthold, W.L. Brown, W.L. Brown, W.L. Brown, W.L. Imhof, W.N. Hess, W.N. Hess, X. Li, Y. Omura, Y.I. Galperin +157 morecore +1 more sourceFractional Skyrmion Tubes in Chiral‐Interfaced 3D Magnetic Nanowires
Advanced Functional Materials, EarlyView.In chiral 3D helical magnetic nanowires, the coupling between the geometric and magnetic chirality provides a way to create topological spin states like vortex tubes. Here, it is demonstrated how the breaking of this coupling in interfaced 3D nanowires of opposite chirality leads to even more complex topological spin states, such as fractional ...John Fullerton, Naëmi Leo, Jakub Jurczyk, Claire Donnelly, Dédalo Sanz‐Hernández, Luka Skoric, Nicholas Mille, Stefan Stanescu, Donald A MacLaren, Rachid Belkhou, Aurelio Hierro‐Rodriguez, Amalio Fernández‐Pacheco +11 morewiley +1 more source