Results 131 to 140 of about 228,666 (350)

Enhanced Electromechanical Response in 1D Hybrid Perovskites: Coexistence of Normal and Relaxor Ferroelectric Phases

open access: yesAdvanced Functional Materials, EarlyView.
The dynamic polarization reversal of coexisting normal and relaxor ferroelectrics in 1D TMAPbI₃ (tetramethylammonium, TMA) is deciphered through combined experimental and theoretical approaches. By bridging atomic‐scale motion, macroscopic polarization switching, and depolarization effects, a universal methodology is established to engineer next ...
Chen Xue   +8 more
wiley   +1 more source

Circuit Model of Plasmon-Enhanced Fluorescence

open access: yesPhotonics, 2015
Hybridized decaying oscillations in a nanosystem of two coupled elements—a quantum emitter and a plasmonic nanoantenna—are considered as a classical effect.
Constantin Simovski
doaj   +1 more source

Ultrafast Energy Transfer Induced Lasing From a Coplanar Donor‐Acceptor‐Donor Molecule in a Microspherical Cavity

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a novel donor‐bridge‐acceptor‐bridge‐donor (D‐B‐A‐B‐D) molecular system, which shows near‐unity intramolecular excitation energy transfer (IET) from two identical energy donors to a coplanar acceptor. It enables a four‐level energy system for efficient lasing at the acceptor emission band in a microspherical cavity with a low lasing
Vishal Kumar   +6 more
wiley   +1 more source

The influence of molecular shape on reorientation dynamics of sizable glass-forming isomers at ambient and elevated pressure

open access: yesScientific Reports
We used dielectric spectroscopy to access the molecular dynamics of three isomers with a structure based on a sizable, partially rigid, and non-polar core connected to a polar phenylene unit differing in the position of the polar group, and, consequently,
Alfred Błażytko   +2 more
doaj   +1 more source

Optical Control of Ferroelectric Imprint in BiFeO3

open access: yesAdvanced Functional Materials, EarlyView.
Above‐bandgap irradiation at room temperature enables on‐demand optical control of defect‐driven built‐in electric fields in BiFeO₃ thin films, fabricated via scalable, chemical spray pyrolysis. These fields, otherwise “frozen‐in,” can cause severe device degradation, including non‐switchable polarization, dead layers near interfaces, and polarization ...
Haoze Zhang   +8 more
wiley   +1 more source

Ultrafast dynamic evolution of multilevel systems in medium-strength laser fields

open access: yesNew Journal of Physics, 2019
The ultrafast dynamic evolution of an atomic system under medium-strength laser fields is studied by performing transient absorption measurement. An analytical model developed from perturbation theory with a modified transition dipole moment is presented
Zhenhao Wang   +7 more
doaj   +1 more source

Understanding the Chemical and Electronic Properties of Sub‐Monolayer TiO2 on High Surface Area Silica for Jet Fuel Synthesis Applications

open access: yesAdvanced Functional Materials, EarlyView.
Sub‐monolayer titania grafted onto mesoporous silica enables solvent‐free photocatalytic upgrading of furfural and cyclopentanone into jet fuel precursors. Advanced spectroscopic methods reveal tunable surface speciation, acidity, and bandgaps, enhancing catalytic efficiency.
Mark A. Isaacs   +12 more
wiley   +1 more source

Rare CP-violated η and η′ meson decays and neutron EDM.

open access: yesEPJ Web of Conferences, 2018
The data for the upper limit on the electric dipole moment of the neutron (nEDM) can be explained by using different mechanisms beyond the Standard Model (SM). The nEDM can be generated by a CP-violating transition of η and η′ mesons into pion pairs.
Zhevlakov Alexey S.   +3 more
doaj   +1 more source

Intersubband Optical Nonlinearity of GeSn Quantum Dots under Vertical Electric Field

open access: yesMicromachines, 2019
The impact of vertical electrical field on the electron related linear and 3rd order nonlinear optical properties are evaluated numerically for pyramidal GeSn quantum dots with different sizes.
Mourad Baira   +3 more
doaj   +1 more source

Regulating the Interphase Strain in High‐Entropy Oxide Thin Films – An Approach to Attaining Giant Energy Storage Capability under Moderate Electric Fields

open access: yesAdvanced Functional Materials, EarlyView.
This work demonstrates an interphase strain engineering strategy to regulate capacitive energy storage performance in high‐entropy oxide thin films. Through introducing pyrochlore nanocolumns, the polarization response of perovskite unit cells is strengthened, yielding recoverable energy densities up to 93 J cm−3 with an efficiency of 83% under ...
Hao Luo   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy