Results 151 to 160 of about 21,677 (282)

Thermo‐Responsive Self‐Recoverable Porous Sensors with Writable Electrodes: Advancing Wearable Motion Detection

open access: yesAdvanced Science, EarlyView.
A self‐recoverable flexible porous sensor with diverse designability of electrodes is developed through writable vapor phase polymerization using shape memory polymers (SMPs) as the fundamental materials. The sensors enable long‐term comprehensive human motion detection.
Ying Gao   +7 more
wiley   +1 more source

Modification Strategies of Carbon‐Based Electrodes From Structural Regulation to Multifunctional Integration

open access: yesAdvanced Science, EarlyView.
Tracing the evolution from structural regulation to multifunctional integration, this paper systematically analyzes modification strategies for carbon‐based electrodes. It evaluates how element doping, surface functionalization, and composite material design affect the electrode performance, and offers perspectives on future applications and challenges
Yunlei Wang   +4 more
wiley   +1 more source

Physical and chemical test results of electrostatic safe flooring materials [PDF]

open access: yes
This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application.
Gompf, R. H.
core   +1 more source

Gradient Ion Beams Regulate Surface Group Modification to Enhance Interfacial Charge Transport in Triboelectric Polymers

open access: yesAdvanced Science, EarlyView.
This study addresses the core scientific question of atomic‐scale structural units and their assembly mechanisms by integrating ion implantation technology— originally developed in nuclear physics research—with flexible intelligent polymers. Through this interdisciplinary approach, we have enabled on‐demand customization of surface functionalities and ...
Yi Chen   +11 more
wiley   +1 more source

Multifunctional E‐Tattoos Based on Electrospun PVBVA Fibers Coated with Ti3C2Tx MXene for Energy Harvesting, Energy Storage, and Biometric Sensing

open access: yesAdvanced Science, EarlyView.
This study explores a novel E‐tattoo made from PVBVA fibers coated with Ti3C2Tx MXene. The device is designed to harvest energy directly from the human body, providing power for itself. The research demonstrates the E‐tattoo's capability for charge storage and its potential for health monitoring through integrated ECG and EMG sensing, all within a ...
Ajay Pratap   +16 more
wiley   +1 more source

Understanding the Roles of Microstructure and Viscoelasticity of Soft Ionic Elastomer for Super‐Capacitive Pressure Sensors

open access: yesAdvanced Science, EarlyView.
By engineering the PVA/H3PO4 ionic elastomer with optimized viscoelasticity and a height‐graded microstructure, the pressure sensor achieves a broad linear range up to 2000 kPa and a high sensitivity of 2.70 nF/kPa. These advancements underscore its strong potential for wearable electronics, including bio‐signal detection, health monitoring, and ...
Allen J. Cheng   +13 more
wiley   +1 more source

Ambient Stable Triboelectric Nanogenerator Based on Conductive Filler Modified Silicone Rubber with Gas Barrier Encapsulation for Footstep Energy Conversion

open access: yesAdvanced Science, EarlyView.
A humidity‐tolerant triboelectric nanogenerator is developed using conductive carbon black‐modified silicone rubber and a flame‐retardant gas barrier layer. The device efficiently harvests footstep energy while maintaining stable output under 30–90% RH and over 1 million cycles.
Yi Wei   +7 more
wiley   +1 more source

Structure‐Dependent Resonant Frequency Engineering of Textile Tactile Sensors Toward Rapid and Precise Braille Recognition Surpassing Human Sensation

open access: yesAdvanced Science, EarlyView.
A resonant frequency engineering strategy is proposed to modulate the sensibility of piezoresistive textile‐based tactile sensor. It achieves simultaneous detection of static pressure and dynamic vibrations across an unprecedented bandwidth of 5–600 Hz, surpassing human sensation, therefore enables rapid and precise braille recognition.
Xianhong Zheng   +17 more
wiley   +1 more source

A Microfiber‐Reinforced Janus Hydrogel E‐Skin With Recyclable Feature for Multimodal Sensing and Gender‐Specific Physiological Monitoring

open access: yesAdvanced Science, EarlyView.
Hydrogel‐based wearable electronics hold great promise for physiological monitoring in privacy‐sensitive regions. In this study, a polyurethane (PU) microfiber‐reinforced gelatin hydrogel e‐skin is developed, boasting multiple advantages such as ultra‐thinness, high toughness, and long‐term skin conformability.
Yarong Ding   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy