Results 131 to 140 of about 97,157 (255)

Toward Predictable Nanomedicine: Current Forecasting Frameworks for Nanoparticle–Biology Interactions

open access: yesAdvanced Intelligent Discovery, EarlyView.
Predictive models successfully screen nanoparticles for toxicity and cellular uptake. Yet, complex biological dynamics and sparse, nonstandardized data limit their accuracy. The field urgently needs integrated artificial intelligence/machine learning, systems biology, and open‐access data protocols to bridge the gap between materials science and safe ...
Mariya L. Ivanova   +4 more
wiley   +1 more source

From Black Box to Glass Box: A Practical Review of Explainable Artificial Intelligence (XAI)

open access: yesAI
Explainable Artificial Intelligence (XAI) has become essential as machine learning systems are deployed in high-stakes domains such as security, finance, and healthcare.
Xiaoming Liu   +7 more
doaj   +1 more source

Trustworthy AI: Closing the gap between development and integration of AI systems in ophthalmic practice. [PDF]

open access: yesProg Retin Eye Res, 2022
González-Gonzalo C   +7 more
europepmc   +1 more source

Robust Reinforcement Learning Control Framework for a Quadrotor Unmanned Aerial Vehicle Using Critic Neural Network

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
Quadrotor unmanned aerial vehicle control is critical to maintain flight safety and efficiency, especially when facing external disturbances and model uncertainties. This article presents a robust reinforcement learning control scheme to deal with these challenges.
Yu Cai   +3 more
wiley   +1 more source

A Hybrid Transfer Learning Framework for Brain Tumor Diagnosis

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
A novel hybrid transfer learning approach for brain tumor classification achieves 99.47% accuracy using magnetic resonance imaging (MRI) images. By combining image preprocessing, ensemble deep learning, and explainable artificial intelligence (XAI) techniques like gradient‐weighted class activation mapping and SHapley Additive exPlanations (SHAP), the ...
Sadia Islam Tonni   +11 more
wiley   +1 more source

Assessing Trustworthy AI in Times of COVID-19: Deep Learning for Predicting a Multiregional Score Conveying the Degree of Lung Compromise in COVID-19 Patients. [PDF]

open access: yesIEEE Trans Technol Soc, 2022
Allahabadi H   +56 more
europepmc   +1 more source

IAR‐Net: Tabular Deep Learning Model for Interventionalist's Action Recognition

open access: yesAdvanced Intelligent Systems, EarlyView.
This study presents IAR‐Net, a deep‐learning framework for catheterization action recognition. To ensure optimality, this study quantifies interoperator similarities and differences using statistical tests, evaluates the distribution fidelity of synthetic data produced by six generative models, and benchmarks multiple deep‐learning models.
Toluwanimi Akinyemi   +7 more
wiley   +1 more source

Roadmap on Artificial Intelligence‐Augmented Additive Manufacturing

open access: yesAdvanced Intelligent Systems, EarlyView.
This Roadmap outlines the transformative role of artificial intelligence‐augmented additive manufacturing, highlighting advances in design, monitoring, and product development. By integrating tools such as generative design, computer vision, digital twins, and closed‐loop control, it presents pathways toward smart, scalable, and autonomous additive ...
Ali Zolfagharian   +37 more
wiley   +1 more source

Reducing organizational inequalities associated with algorithmic controls

open access: yesDiscover Artificial Intelligence
Algorithmic technologies are widely applied in organizational decision-making today, which can improve resource allocation and decision-making coordination to facilitate the accuracy and efficiency of the decision-making process within and across ...
Yueqi Li, Biyun Xiang
doaj   +1 more source

Predicting Postresection Colorectal Liver Metastases Recurrence Using Advanced Graph Neural Networks with Explainability and Causal Inference

open access: yesAdvanced Intelligent Systems, EarlyView.
This study introduces a framework that combines graph neural networks with causal inference to forecast recurrence and uncover the clinical and pathological factors driving it. It further provides interpretability, validates risk factors via counterfactual and interventional analyses, and offers evidence‐based insights for treatment planning ...
Jubair Ahmed   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy