Results 201 to 210 of about 121,111 (354)

Evaluation of Exhaust Gas Recirculation and Fuel Injection Strategies for Emission Performance in Marine Two-Stroke Engine

open access: diamond, 2019
Enxing Zhang   +6 more
openalex   +1 more source

Small Nucleolar RNA Snord17 Promotes Self‐Renewal of Intestinal Stem Cells through Yy2 mRNA Export and Tead4 Activation

open access: yesAdvanced Science, EarlyView.
Snord17, through interaction with Thoc3, promotes nuclear export and translation of Yy2 mRNA in Snord17+/+ ISCs. The Yy2 protein subsequently binds the Tead4 promoter to promote its transcription, activating Hippo signaling, which is essential for ISC maintenance.
Peikang Zhang   +10 more
wiley   +1 more source

Adenylyl Cyclase 8 in Dorsal CA1 Neurons Prevents Depressive‐Like Behaviors by Maintaining Neuronal Excitability and Glutamatergic Neurotransmission Through TIP39‐PTH2R Signaling

open access: yesAdvanced Science, EarlyView.
Depression, a prevalent neuropsychiatric disorder with unclear pathogenesis, involves dysfunctional adenylyl cyclase 8 (Adcy8) as a key risk factor. Chronic stress selectively reduces Adcy8 expression in the dorsal CA1 (dCA1) neurons. Depletion of Adcy8 in dCA1 excitatory neurons induces depressive‐like behaviors by impairing neuronal excitability and ...
Zi‐Jie Liu   +14 more
wiley   +1 more source

The Mitochondrial Guardian α‐Amyrin Mitigates Alzheimer's Disease Pathology via Modulation of the DLK‐SARM1‐ULK1 Axis

open access: yesAdvanced Science, EarlyView.
Dietary habits play a key role in chronic diseases, and higher annual consumption of fruit and vegetable may lower risk of dementia. Artificial intelligence predicts the lipid‐like compound α‐Amyrin (αA) from plants with edible peels as a drug candidate against Alzheimer's disease.
Shu‐Qin Cao   +36 more
wiley   +1 more source

Microglial Fkbp5 Impairs Post‐Stroke Vascular Integrity and Regeneration by Promoting Yap1‐Mediated Glycolysis and Oxidative Phosphorylation

open access: yesAdvanced Science, EarlyView.
A post‐stroke perivascular niche of microglia characterized by low expression of M2 markers and elevated glycolysis, oxidative phosphorylation (OXPHOS), and phagocytic activity is identified, which is termed stroke‐activated vascular‐associated microglia (stroke‐VAM).
Yanan Li   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy