Results 41 to 50 of about 6,523 (220)

Ulam-Hyers stability for partial differential equations [PDF]

open access: yesCreative Mathematics and Informatics, 2012
Using the weakly Picard operator technique, we will present some Ulam-Hyers stability results for some partial differential equations.
openaire   +1 more source

Satbility of Ternary Homomorphisms via Generalized Jensen Equation

open access: yes, 2005
In this paper, we establish the generalized Hyers--Ulam--Rassias stability of homomorphisms between ternary algebras associted to the generalized Jensen functional equation $r f(\frac{sx+ty}{r}) = s f(x) + t f(y)$.Comment: 12 ...
Moslehian, Mohammad Sal   +1 more
core   +2 more sources

Hyers-Ulam Stability of Differentiation Operator on Hilbert Spaces of Entire Functions

open access: yesJournal of Function Spaces, 2014
We investigate the Hyers-Ulam stability of differentiation operator on Hilbert spaces of entire functions. We give a necessary and sufficient condition in order that the operator has the Hyers-Ulam stability and also show that the best constant of Hyers ...
Chun Wang, Tian-Zhou Xu
doaj   +1 more source

Four Different Ulam-Type Stability for Implicit Second-Order Fractional Integro-Differential Equation with M-Point Boundary Conditions

open access: yesMathematics
In this paper, we discuss the existence and uniqueness of a solution for the implicit two-order fractional integro-differential equation with m-point boundary conditions by applying the Banach fixed point theorem.
Ilhem Nasrallah   +2 more
doaj   +1 more source

Approximate Homomorphisms of Ternary Semigroups

open access: yes, 2005
A mapping $f:(G_1,[ ]_1)\to (G_2,[ ]_2)$ between ternary semigroups will be called a ternary homomorphism if $f([xyz]_1)=[f(x)f(y)f(z)]_2$. In this paper, we prove the generalized Hyers--Ulam--Rassias stability of mappings of commutative semigroups into ...
A. Cayley   +22 more
core   +2 more sources

Generalized Hyers–Ulam Stability of Laplace Equation With Neumann Boundary Condition in the Upper Half‐Space

open access: yesMathematical Methods in the Applied Sciences, Volume 49, Issue 2, Page 521-530, 30 January 2026.
ABSTRACT This paper investigates the generalized Hyers–Ulam stability of the Laplace equation subject to Neumann boundary conditions in the upper half‐space. Traditionally, Hyers–Ulam stability problems for differential equations are analyzed by examining the system's error, particularly in relation to a forcing term.
Dongseung Kang   +2 more
wiley   +1 more source

Impulsive Coupled System of Fractional Differential Equations with Caputo–Katugampola Fuzzy Fractional Derivative

open access: yesJournal of Mathematics, 2021
In this article, we investigate the existence, uniqueness, and different kinds of Ulam–Hyers stability of solutions of an impulsive coupled system of fractional differential equations by using the Caputo–Katugampola fuzzy fractional derivative.
Leila Sajedi   +2 more
doaj   +1 more source

Hyers-Ulam stability for coupled random fixed point theorems and applications to periodic boundary value random problems [PDF]

open access: yes, 2019
In this paper, we prove some existence, uniqueness and Hyers-Ulam stability results for the coupled random fixed point of a pair of contractive type random operators on separable complete metric spaces. The approach is based on a new version of the Perov
Blouhi, Tayeb   +2 more
core  

Ulam–Hyers stability and exponentially dichotomic equations in Banach spaces

open access: yesElectronic Journal of Qualitative Theory of Differential Equations, 2023
For finite-dimensional linear differential systems with bounded coefficients, we prove that their exponential dichotomy on R is equivalent to their Ulam–Hyers stability on R with uniqueness. We also consider abstract non-autonomous evolution equations which are exponentially bounded and exponentially dichotomic and prove that ...
openaire   +3 more sources

Ulam‐type stability of ψ− Hilfer fractional‐order integro‐differential equations with multiple variable delays

open access: yesAsian Journal of Control, Volume 28, Issue 1, Page 34-45, January 2026.
Abstract We study a nonlinear ψ−$$ \psi - $$ Hilfer fractional‐order delay integro‐differential equation ( ψ−$$ \psi - $$ Hilfer FrODIDE) that incorporates N−$$ N- $$ multiple variable time delays. Utilizing the ψ−$$ \psi - $$ Hilfer fractional derivative ( ψ−$$ \psi - $$ Hilfer‐FrD), we investigate the Ulam–Hyers––Rassias (U–H–R), semi‐Ulam–Hyers ...
Cemil Tunç, Osman Tunç
wiley   +1 more source

Home - About - Disclaimer - Privacy