Results 51 to 60 of about 6,523 (220)

Study of a nonlinear multi-terms boundary value problem of fractional pantograph differential equations

open access: yesAdvances in Difference Equations, 2021
In this research work, a class of multi-term fractional pantograph differential equations (FODEs) subject to antiperiodic boundary conditions (APBCs) is considered.
Muhammad Bahar Ali Khan   +5 more
doaj   +1 more source

Stability of Partial Differential Equations by Mahgoub Transform Method

open access: yesSakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2022
The stability theory is an important research area in the qualitative analysis of partial differential equations. The Hyers-Ulam stability for a partial differential equation has a very close exact solution to the approximate solution of the differential
Harun Biçer
doaj   +1 more source

On the Orthogonal Stability of the Pexiderized Quadratic Equation

open access: yes, 2005
The Hyers--Ulam stability of the conditional quadratic functional equation of Pexider type f(x+y)+f(x-y)=2g(x)+2h(y), x\perp y is established where \perp is a symmetric orthogonality in the sense of Ratz and f is odd.Comment: 10 pages, Latex; Changed ...
Aczél J.   +12 more
core   +2 more sources

Fixed Point Analysis for Cauchy‐Type Variable‐Order Fractional Differential Equations With Finite Delay

open access: yesInternational Journal of Differential Equations, Volume 2026, Issue 1, 2026.
This paper presents a comprehensive analysis of the existence, uniqueness, and Ulam–Hyers stability of solutions for a class of Cauchy‐type nonlinear fractional differential equations with variable order and finite delay. The motivation for this study lies in the increasing importance of variable‐order fractional calculus in modeling real‐world systems
Souhila Sabit   +5 more
wiley   +1 more source

Ulam-Hyers stability for matrix-valued fractional differential equations [PDF]

open access: yesJournal of Mathematical Inequalities, 2018
Summary: In this paper, some Ulam-Hyers stability results for matrix-valued fractional differential equations are obtained. We also establish some sufficient conditions for the stability of matrix-valued fractional differential equations.
Yang, Zhanpeng   +2 more
openaire   +1 more source

Neuronal Dynamics of an Intrinsically Bursting Neuron Through the Caputo–Fabrizio Fractal–Fractional Hodgkin–Huxley Model

open access: yesInternational Journal of Differential Equations, Volume 2026, Issue 1, 2026.
This study introduces a novel fractal–fractional extension of the Hodgkin–Huxley model to capture complex neuronal dynamics, with particular focus on intrinsically bursting patterns. The key innovation lies in the simultaneous incorporation of Caputo–Fabrizio operators with fractional order α for memory effects and fractal dimension τ for temporal ...
M. J. Islam   +4 more
wiley   +1 more source

Existence and Stability Results for a Fractional Order Differential Equation with Non-Conjugate Riemann-Stieltjes Integro-Multipoint Boundary Conditions

open access: yesMathematics, 2019
We discuss the existence and uniqueness of solutions for a Caputo-type fractional order boundary value problem equipped with non-conjugate Riemann-Stieltjes integro-multipoint boundary conditions on an arbitrary domain.
Bashir Ahmad   +3 more
doaj   +1 more source

Optimal Control Strategies and Continuous Dependence for Stochastic Hilfer Fractional Systems With Delay: A Volterra‐Fredholm Integro‐Differential Approach

open access: yesOptimal Control Applications and Methods, Volume 46, Issue 6, Page 2708-2726, November/December 2025.
The graphical abstract highlights our research on Sobolev Hilfer fractional Volterra‐Fredholm integro‐differential (SHFVFI) control problems for 1<ϱ<2$$ 1<\varrho <2 $$. We begin with the Hilfer fractional derivative (HFD) of order (1,2) in Sobolev type, which leads to Volterra‐Fredholm integro‐differential equations.
Marimuthu Mohan Raja   +3 more
wiley   +1 more source

On stability for nonlinear implicit fractional differential equations

open access: yesLe Matematiche, 2015
The purpose of this paper is to establish some  types of Ulam stability: Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of implicit fractional-order ...
Mouffak Benchohra, Jamal E. Lazreg
doaj  

On the stability of J$^*-$derivations

open access: yes, 2009
In this paper, we establish the stability and superstability of $J^*-$derivations in $J^*-$algebras for the generalized Jensen--type functional equation $$rf(\frac{x+y}{r})+rf(\frac{x-y}{r})= 2f(x).$$ Finally, we investigate the stability of $J ...
A. Ebadian   +25 more
core   +2 more sources

Home - About - Disclaimer - Privacy