Results 101 to 110 of about 3,088,117 (225)
Nonlinear analysis for Hilfer fractional differential equations
In this paper, we discuss nonlinear Hilfer fractional differential equations with separated boundary conditions. Using the well-known Leggett–Williams theorem, we first explore the existence of multiple positive solutions for the nonlinear Hilfer ...
Debananda Basua, Swaroop Nandan Bora
doaj +1 more source
Note on the solution of random differential equations via ψ-Hilfer fractional derivative
This manuscript is devoted to an investigation of the existence, uniqueness and stability of random differential equations with ψ-Hilfer fractional derivative.
S. Harikrishnan +3 more
doaj +1 more source
In this paper, we study the semi-Hyers–Ulam–Rassias stability and the generalized semi-Hyers–Ulam–Rassias stability of some partial differential equations using Laplace transform. One of them is the convection partial differential equation.
Daniela Marian
doaj +1 more source
Bifurcations of discrete breathers in a diatomic Fermi-Pasta-Ulam chain
Discrete breathers are time-periodic, spatially localized solutions of the equations of motion for a system of classical degrees of freedom interacting on a lattice. Such solutions are investigated for a diatomic Fermi-Pasta-Ulam chain, i. e., a chain of
Aubry S +15 more
core +3 more sources
Beyond Conventional Cooling: Advanced Micro/Nanostructures for Managing Extreme Heat Flux
This review examines the design, application, and manufacturing of biomimetic or engineered micro/nanostructures for managing high heat‐flux in multi‐level electronics by enhancing conductive, convective, phase‐changing, and radiative heat transfer mechanisms, highlighting their potential for efficient, targeted thermal management, and future prospects.
Yuankun Zhang +7 more
wiley +1 more source
Ulam Stability in Real Inner-Product Spaces
Roughly speaking an equation is called Ulam stable if near each approximate solution of the equation there exists an exact solution. In this paper we prove that Cauchy-Schwarz equation, Ortogonality equation and Gram equation are Ulam stable.This paper is concerned with the Ulam stability of some classical equations arising in thecontext of inner ...
MOSNEGUTU, Bianca, MǍDUTǍ, Alexandra
openaire +4 more sources
Abstract We study a nonlinear ψ−$$ \psi - $$ Hilfer fractional‐order delay integro‐differential equation ( ψ−$$ \psi - $$ Hilfer FrODIDE) that incorporates N−$$ N- $$ multiple variable time delays. Utilizing the ψ−$$ \psi - $$ Hilfer fractional derivative ( ψ−$$ \psi - $$ Hilfer‐FrD), we investigate the Ulam–Hyers––Rassias (U–H–R), semi‐Ulam–Hyers ...
Cemil Tunç, Osman Tunç
wiley +1 more source
Randomly sparsified Richardson iteration: A dimension‐independent sparse linear solver
Abstract Recently, a class of algorithms combining classical fixed‐point iterations with repeated random sparsification of approximate solution vectors has been successfully applied to eigenproblems with matrices as large as 10108×10108$10^{108} \times 10^{108}$. So far, a complete mathematical explanation for this success has proven elusive.
Jonathan Weare, Robert J. Webber
wiley +1 more source
In this manuscript, we study the existence, uniqueness and various kinds of Ulam stability including Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability, and generalized Ulam-Hyers-Rassias stability of the solution to an ...
Akbar Zada, Hira Waheed
doaj
Hyers–Ulam stability of derivations and linear functions [PDF]
9 pages; published in Aequationes Mathematicae in ...
Boros, Zoltán, Gselmann, Eszter
openaire +3 more sources

