Results 51 to 60 of about 3,088,117 (225)
Hyers–Ulam stability of second-order differential equations using Mahgoub transform
The aim of this research is investigating the Hyers–Ulam stability of second-order differential equations. We introduce a new method of investigation for the stability of differential equations by using the Mahgoub transform. This is the first attempt of
Antony Raj Aruldass +2 more
semanticscholar +1 more source
Hyers–Ulam stability and discrete dichotomy
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Dorel Barbu +2 more
openaire +2 more sources
Some essential conditions for existence theory and stability analysis to a class of boundary value problems of fractional delay differential equations involving Atangana–Baleanu-Caputo derivative are established. The deserted results are derived by using
Gauhar Ali +5 more
doaj +1 more source
Some fundamental conditions and hypotheses are established to ensure the existence, uniqueness, and stability to a class of implicit boundary value problems (BVPs) with Atangana–Baleanu–Caputo type derivative and integral.
Asma +3 more
doaj +1 more source
Practical Ulam-Hyers-Rassias stability for nonlinear equations [PDF]
In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets.
Jin Rong Wang, Michal Fečkan
doaj +1 more source
Behavior and Breakdown of Higher-Order Fermi-Pasta-Ulam-Tsingou Recurrences [PDF]
We investigate numerically the existence and stability of higher-order recurrences (HoRs), including super-recurrences, super-super-recurrences, etc., in the alpha and beta Fermi-Pasta-Ulam-Tsingou (FPUT) lattices for initial conditions in the ...
Campbell, David K., Pace, Salvatore D.
core +2 more sources
Ulam-Hyers Stability for Operatorial Equations
Let \((X,d)\) be a metric space, \(\mathcal P(X):=\{Y\subset X\}\), \(P(X):=\{Y\in\mathcal P(X):Y\neq\emptyset\}\), \(D_d:P(X)\times P(X)\to\mathbb R_+\) the gap functional, given by \[ D_d(A,B)=\inf\left\{d(a,b):a\in A,\,b\in B\right\}, \] and let \(F:X\to P(X)\) be a multivalued operator.
Bota-Boriceanu, M. F., Petruşel, A.
openaire +2 more sources
Fixed Points and Generalized Hyers‐Ulam Stability
In this paper we prove a fixed‐point theorem for a class of operators with suitable properties, in very general conditions. Also, we show that some recent fixed‐points results in Brzdęk et al., (2011) and Brzdęk and Ciepliński (2011) can be obtained directly from our theorem. Moreover, an affirmative answer to the open problem of Brzdęk and Ciepliński
Cădariu, L. +2 more
openaire +3 more sources
Asymptotic stability of the Cauchy and Jensen functional equations [PDF]
The aim of this note is to investigate the asymptotic stability behaviour of the Cauchy and Jensen functional equations. Our main results show that if these equations hold for large arguments with small error, then they are also valid everywhere with a ...
A. Bahyrycz +19 more
core +2 more sources
We discuss the existence and uniqueness of solutions for a Caputo-type fractional order boundary value problem equipped with non-conjugate Riemann-Stieltjes integro-multipoint boundary conditions on an arbitrary domain.
Bashir Ahmad +3 more
doaj +1 more source

