Results 71 to 80 of about 987 (103)

Microlocal analysis of ultradistributions [PDF]

open access: yesProceedings of the American Mathematical Society, 1998
The ultradistributional wave front sets of an ultradistribution u u are characterized by the behaviour of K ∗ u K *u on the boundary of the tube domain D R n D \mathbf {R}^n , where K K is the ...
openaire   +2 more sources

Inhomogeneous Gevrey classes and ultradistributions

open access: yesJournal of Mathematical Analysis and Applications, 2004
Starting from the definition of inhomogeneous Gevrey classes given by \textit{O. Liess} and \textit{L. Rodino} [Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 3, 233--323 (1984; Zbl 0557.35131)], the authors introduce the non-quasi-analytic inhomogeneous Gevrey classes of Roumieu type, denoted by \(G^{s, \lambda}.\) Such a class of ...
D. Calvo   +2 more
openaire   +4 more sources

Spaces of tempered ultradistributions and differential equations

open access: yesNovi Sad Journal of Mathematics - NSJOM, 2000
Summary: In the paper we considere the Laplace equation and apply the heat kernel method to obtain some properties of solutions.
Lozanov-Crvenković, Zagorka   +1 more
openaire   +1 more source

Representation theorems for tempered ultradistributions

open access: yesPublications de l'Institut Mathematique, Beograd, 1999
In a series of papers, \textit{T. Matsuzawa} introduced the heat kernel technique [see e.g., Nagoya Math. J. 108, 53-66 (1987; Zbl 0636.46047)]. The authors of the paper under review use Matsuzawa's technique to obtain two characterizations of classes of both Beurling and Roumieu type tempered ultradistributions.
Budinčević, Mirko   +2 more
openaire   +1 more source

Ultradistributions, III. Vector valued ultradistributions and the theory of kernels

open access: yesUltradistributions, III. Vector valued ultradistributions and the theory of kernels
application ...
openaire  

Hilbert transformation of Beurling ultradistributions

open access: yesRendiconti del Seminario Matematico Della Universita di Padova, 1987
Der Verf. untersucht die Hilberttransformation von Beurlingschen Ultradistributionen. Er zeigt, daß die Hilberttransformation \(H\) den Raum \(D_{L^s}^{(Mp)}(\mathbb{R})\) in sich abbildet. Die Behauptung in Theorem 7, daß diese Abbildung surjektiv ist, ist sicher falsch.
openaire   +1 more source

Home - About - Disclaimer - Privacy