Results 71 to 80 of about 987 (103)
Microlocal analysis of ultradistributions [PDF]
The ultradistributional wave front sets of an ultradistribution u u are characterized by the behaviour of K ∗ u K *u on the boundary of the tube domain D R n D \mathbf {R}^n , where K K is the ...
openaire +2 more sources
Inhomogeneous Gevrey classes and ultradistributions
Starting from the definition of inhomogeneous Gevrey classes given by \textit{O. Liess} and \textit{L. Rodino} [Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 3, 233--323 (1984; Zbl 0557.35131)], the authors introduce the non-quasi-analytic inhomogeneous Gevrey classes of Roumieu type, denoted by \(G^{s, \lambda}.\) Such a class of ...
D. Calvo +2 more
openaire +4 more sources
A Review of the Classical Canonical Ensemble Treatment of Newton's Gravitation. [PDF]
Pennini F, Plastino A, Rocca M, Ferri G.
europepmc +1 more source
On a space of smooth functions on a convex unbounded set in ℝn admitting holomorphic extension in ℂn
Musin Il’dar, Yakovleva Polina
doaj +1 more source
Ultradistributional boundary values of harmonic functions on the sphere [PDF]
Vindas Diaz, Jasson, Vuckovic, Dorde
core +1 more source
Spaces of tempered ultradistributions and differential equations
Summary: In the paper we considere the Laplace equation and apply the heat kernel method to obtain some properties of solutions.
Lozanov-Crvenković, Zagorka +1 more
openaire +1 more source
Representation theorems for tempered ultradistributions
In a series of papers, \textit{T. Matsuzawa} introduced the heat kernel technique [see e.g., Nagoya Math. J. 108, 53-66 (1987; Zbl 0636.46047)]. The authors of the paper under review use Matsuzawa's technique to obtain two characterizations of classes of both Beurling and Roumieu type tempered ultradistributions.
Budinčević, Mirko +2 more
openaire +1 more source
Ultradistributions, III. Vector valued ultradistributions and the theory of kernels
application ...
openaire
Hilbert transformation of Beurling ultradistributions
Der Verf. untersucht die Hilberttransformation von Beurlingschen Ultradistributionen. Er zeigt, daß die Hilberttransformation \(H\) den Raum \(D_{L^s}^{(Mp)}(\mathbb{R})\) in sich abbildet. Die Behauptung in Theorem 7, daß diese Abbildung surjektiv ist, ist sicher falsch.
openaire +1 more source

