Results 181 to 190 of about 628,380 (224)
Bioorthogonal Engineering of Cellular Microenvironments Using Isonitrile Ligations
Highly selective chemistries are required for fabrication and post‐cross–linking modification of cell‐encapsulating hydrogels used in tissue engineering applications. Isonitrile ligation reactions represent a promising class of bioorthogonal chemistries for engineering hydrogel‐based cellular microenvironments. Isonitrile‐based hydrogels are stable and
Ping Zhou+2 more
wiley +1 more source
Biointerfacing with AgBiS2 Quantum Dots for Pseudocapacitive Photostimulation
It is demonstrated that AgBiS2 quantum dots exhibit unique photoinduced pseudocapacitive charge transfer properties, enabling efficient light‐to‐electrical energy conversion. These quantum dots facilitate enhanced light absorption and transduction when integrated with ZnO nanowires, which serve as an effective charge transport medium.
Ridvan Balamur+8 more
wiley +1 more source
A hybrid‐nested microneedle/cryogel scaffold (MQW‐CMg‐MOF) is designed for efficient biofilm removal and accelerated healing of diabetic wounds. The scaffold shows substantial biofilm removal in vitro and in a preclinical diabetic swine biofilm‐infected wound model compared to the control.
Syed Muntazir Andrabi+11 more
wiley +1 more source
High‐Speed and Scalable Wet Spinning of Graphene/Liquid Crystalline Elastomer Composite Filaments
Polydomain filaments from graphene/liquid crystalline elastomer (LCE) composites are scalably‐manufactured by wet spinning across a wide range of diameters (≈137–1128 µm) at a speed up to 4500 m h−1 through a double diffusion coagulation mechanism, enabling fast actuation and optimized mechanical performance for broad applications.
Antonio Proctor Martinez+5 more
wiley +1 more source
Tin‐Based 2D/3D Perovskite Vertical Heterojunction for High‐Performance Synaptic Phototransistors
Phototransistors based on tin‐based 2D/3D perovskite heterostructures show an ultrahigh responsivity and detectivity at a low gate voltage across a broad wavelength region from ultraviolet to near‐infrared. The devices can replicate neuromorphic learning and remembering behaviors to light stimuli, in addition to electric depression and memory erasure ...
Hok‐Leung Loi+10 more
wiley +1 more source
By using (meso)porous N‐doped carbon nanospheres with tailored intraparticle porosity and constant particle size as conductive carbon in PVMPT‐based organic battery electrodes, the complete volume of the carbon is accessible for the immobilization of PVMPT, resulting in high accessible specific capacities while maintaining a good rate capability and ...
Niklas Ortlieb+6 more
wiley +1 more source
Multi‐Scaled Cellulosic Nanonetworks from Tunicates
Microbial and plant nanonetworks of cellulose have enabled a wide range of high‐performance yet sustainable materials. Herein, a third class of cellulosic nanonetworks is showcased by exploiting the only animal tissue‐producing cellulose nanofibers, i.e., ascidians. An ultrastructure including spherical cells and a microvasculature with diameters of 50–
Mano Govindharaj+10 more
wiley +1 more source
A novel low‐bandgap random terpolymer is designed for narrow band detection in charge collection narrowing (CCN) based organic photodetectors. With a relative thin active layer (<1 µm), the CCN‐based devices achieved a narrowband response of 68 nm full‐width‐at‐half‐maximum at 916 nm, together with Responsivity values of 0.13 A W−1 and dark current of ...
Matilde Brunetta+14 more
wiley +1 more source
Biofilm Control by Active Topography with Mucin Coating
This study reports a new antifouling strategy based on a bioinspired design. Mucin coating enhances biofilm control by active topography with beating micron‐sized pillars. Besides the mechanical force of beating pillars, the antibiofilm activities also involve biological factors since mucin coating inhibits swarming motility and c‐di‐GMP synthesis in ...
Zehui Han+4 more
wiley +1 more source
A laser‐driven strategy enables precise microstructural modulation of Mo₂C, achieving nanoscale grain control (15.6 ± 5 nm) and an ultrahigh grain boundary density (130 µm−1). Moreover, high‐angle grain boundaries enhance active sites, facilitate electron transport, and optimize hydrogen adsorption kinetics, significantly reducing overpotential.
Seok‐Ki Hyeong+13 more
wiley +1 more source