Results 91 to 100 of about 1,213,467 (327)

Multimodal Mechanical Testing of Additively Manufactured Ti6Al4V Lattice Structures: Compression, Bending, and Fatigue

open access: yesAdvanced Engineering Materials, EarlyView.
In this experimental study, the mechanical properties of additively manufactured Ti‐6Al‐4V lattice structures of different geometries are characterized using compression, four point bending and fatigue testing. While TPMS designs show superior fatigue resistance, SplitP and Honeycomb lattice structures combine high stiffness and strength. The resulting
Klaus Burkart   +3 more
wiley   +1 more source

Screen‐Printed Flexible Piezoelectric Force Sensor Array with Electromagnetic Interference Shielding

open access: yesAdvanced Engineering Materials, EarlyView.
This article introduces a flexible screen‐printed piezoelectric sensor array designed for low‐frequency healthcare applications such as tactile sensing and cardiovascular monitoring. The device integrates interface electronics enabling the simultaneous acquisition of up to 128 signals, along with flexible EMI shielding that significantly reduces noise ...
Joseph Faudou   +6 more
wiley   +1 more source

Uncertainty Principle and Super-Radiance [PDF]

open access: yesSSRN Electronic Journal, 2020
Associate Professor Hasegawa Yuji of the Vienna University of Technology and Professor Masaaki Ozawa of Nagoya University and other scholars published empirical results against Heisenberg's uncertainty principle on January 15, 2012.They got a measurement result with a smaller error than the Heisenberg uncertainty principle, which proved the measurement
openaire   +1 more source

Influence of Sample Preparation and Processing Procedures on the Thermal Diffusivity of MgO‐C Refractories

open access: yesAdvanced Engineering Materials, EarlyView.
The thermal diffusivity of MgO‐C refractories is highly sensitive to sample preparation and processing procedures. In this article, the effects of coking sequence, machining conditions, structural inhomogeneity, and graphite coating application on measurements using laser flash apparatus are systematically investigated.
Luyao Pan   +4 more
wiley   +1 more source

Entropic uncertainty principle for mixed states

open access: yesPhysical Review Research
The entropic uncertainty principle in the form proven by Maassen and Uffink yields a fundamental inequality that is prominently used in many places all over the field of quantum information theory.
Antonio F. Rotundo, René Schwonnek
doaj   +1 more source

Functional Ghobber-Jaming Uncertainty Principle

open access: yesMathematical Notes, 2023
Let $(\{f_j\}_{j=1}^n, \{\tau_j\}_{j=1}^n)$ and $(\{g_k\}_{k=1}^n, \{\omega_k\}_{k=1}^n)$ be two p-orthonormal bases for a finite dimensional Banach space $\mathcal{X}$. Let $M,N\subseteq \{1, \dots, n\}$ be such that \begin{align*} o(M)^\frac{1}{q}o(N)^\frac{1}{p}< \frac{1}{\displaystyle \max_{1\leq j,k\leq n}|g_k(\tau_j) |}, \end{align*
openaire   +2 more sources

Analyzing Electronic Excitations and Exciton Binding Energies in Y6 Films

open access: yesAdvanced Functional Materials, EarlyView.
The Y6 molecule is used for increasing the efficiency of organic solar cells. The exciton binding energy is calculated for ensembles of Y6 molecules that are representative of the typically used films. The calculations show that the excitons typically spread out over many molecules.
Sahar Javaid Akram   +2 more
wiley   +1 more source

Organic Electrochemical Transistor Channel Materials: Copolymerization Versus Physical Mixing of Glycolated and Alkoxylated Polymers

open access: yesAdvanced Functional Materials, EarlyView.
This work discusses the use of blended channel materials in OECTs. It explores how mixing glycolated and alkoxylated polymers in various ratios offers a simpler and more efficient route to tuning OECT properties. The performance of the polymer blends is compared to the corresponding copolymers, demonstrating similar OECT characteristics, swelling ...
Lize Bynens   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy