Results 141 to 150 of about 96,930 (287)

Ultrasound‐Triggered Gelation for Restoring Biomechanical Properties of Degenerated Functional Spinal Units

open access: yesAdvanced Healthcare Materials, EarlyView.
This study introduces an innovative approach to treating intervertebral disc degeneration using ultrasound‐triggered in situ hydrogel formation. Proof‐of‐concept experiments using optimized biomaterial and ultrasound parameters demonstrate partial restoration of biomechanical function and successful integration into degenerated disc tissue, offering a ...
Veerle A. Brans   +11 more
wiley   +1 more source

3D Printing Strategies for Bioengineering Human Cornea

open access: yesAdvanced Healthcare Materials, EarlyView.
This review highlights recent progress in 3D bioprinting strategies for engineering human corneas. Key aspects include the replication of corneal transparency, curvature, and biomechanical properties, alongside innovations in recent advancements in 3D printing methods, which benefit in overcoming current challenges.
Yunong Yuan   +4 more
wiley   +1 more source

Computational Modeling Meets 3D Bioprinting: Emerging Synergies in Cardiovascular Disease Modeling

open access: yesAdvanced Healthcare Materials, EarlyView.
Emerging advances in three‐dimensional bioprinting and computational modeling are reshaping cardiovascular (CV) research by enabling more realistic, patient‐specific tissue platforms. This review surveys cutting‐edge approaches that merge biomimetic CV constructs with computational simulations to overcome the limitations of traditional models, improve ...
Tanmay Mukherjee   +7 more
wiley   +1 more source

Compression‐Tension‐Asymmetry and Stiffness Nonlinearity of Collagen‐Matrigel Composite Hydrogels

open access: yesAdvanced Healthcare Materials, EarlyView.
Self‐assembled collagen hydrogel matrices are widely used in tissue engineering applications. These matrices stiffen and contract laterally under tension due to fiber alignment and soften and collapse under compression due to fiber buckling. It is demonstrated that filler materials, such as Matrigel, linearize the mechanical behavior of collagen ...
David Böhringer   +9 more
wiley   +1 more source

A 3D Bioprinted Spheroid‐Laden dECM‐Enriched Osteosarcoma Model for Enhanced Drug Testing and Therapeutic Discovery

open access: yesAdvanced Healthcare Materials, EarlyView.
A 3D biomimetic OS model was developed by bioprinting an OS‐cell‐derived dECM‐enriched bioink with OS spheroids incorporated. The model showed upregulation of known OS prognostic markers and increased resistance to doxorubicin, compared to 2D cultures and scaffold‐free spheroids, making this a more clinically relevant platform for drug discovery ...
Margarida F. Domingues   +6 more
wiley   +1 more source

Decellularized Extracellular Matrix (dECM) in Tendon Regeneration: A Comprehensive Review

open access: yesAdvanced Healthcare Materials, EarlyView.
Decellularized Extracellular Matrix (dECM) offers a promising solution by replicating the native tendon microenvironment and promoting regeneration. This review highlights advances in the decellularization methods, as well as their integration with emerging technologies and translational progress in tendon tissue engineering.
Kumaresan Sakthiabirami   +4 more
wiley   +1 more source

Ti6Al4V‐Bioglass‐Copper Composites for Load‐Bearing Implants

open access: yesAdvanced Healthcare Materials, EarlyView.
We have designed and manufactured a novel Ti64‐based composite by adding 45S5 bioglass (BG) and copper (Cu). Adding BG on titanium improves wear resistance and biocompatibility, whereas Cu addition improves mechanical strength while providing inherent lifelong bacterial resistance.
Lochan Upadhayay   +3 more
wiley   +1 more source

Injectable Stimuli‐Responsive Amphiphilic Hydrogel for Rapid Hemostasis, Robust Tissue Adhesion, and Controlled Drug Delivery in Trauma and Surgical Care

open access: yesAdvanced Healthcare Materials, EarlyView.
Fast‐acting hydrogel seals bleeding wounds as the illustrated injectable, pH‐responsive network rapidly gels in situ to stop hemorrhage, adhere strongly to wet tissue, and release antibiotics in a controlled, pH‐dependent manner. The material withstands high pressures, shows excellent biocompatibility, and degrades safely, offering a versatile platform
Arvind K. Singh Chandel   +5 more
wiley   +1 more source

Failure prediction of thin beryllium sheets used in spacecraft structures [PDF]

open access: yes
In an attempt to predict failure for cross-rolled beryllium sheet structures, high order macroscopic failure criteria are used. These require the knowledge of in-plane uniaxial and shear strengths.
Mascorro, Edward   +2 more
core   +1 more source

Home - About - Disclaimer - Privacy