Results 131 to 140 of about 476,682 (147)
On stability of non-surjective $ (\varepsilon, s) $-isometries of uniformly convex Banach spaces
Yuqi Sun+3 more
openalex +1 more source
Pazy's fixed point theorem with respect to the partial order in uniformly convex Banach spaces
Yisheng Song, Rudong Chen
openalex +2 more sources
On proximal mappings with Young functions in uniformly convex Banach spaces
Miroslav Bačák, Ulrich Kohlenbach
openalex +2 more sources
Uniformly convex Banach spaces are reflexive—constructively [PDF]
We propose a natural definition of what it means in a constructive context for a Banach space to be reflexive, and then prove a constructive counterpart of the Milman‐Pettis theorem that uniformly convex Banach spaces are reflexive.
Douglas S. Bridges+2 more
openaire +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
BASES IN UNIFORMLY CONVEX AND UNIFORMLY FLATTENED BANACH SPACES
Mathematics of the USSR-Izvestiya, 1971The aim of this article is to obtain two-sided estimates for the norm of an element x in a uniformly convex and uniformly flattened Banach space E in terms of lp-norms of the sequence of coefficients which occur in the expansion of x in a basis .
V I Gurariĭ, N I Gurariĭ
openaire +2 more sources
On nearly uniformly convex Banach spaces
Mathematical Proceedings of the Cambridge Philosophical Society, 1983A real Banach space (X, ‖ · ‖) is said to be uniformly convex (UC) (or uniformly rotund) if for all ∈ > 0 there is a δ > 0 such that if ‖x| ≤ 1, ‖y‖ ≤ 1 and ‖x−y‖ ≥ ∈, then ‖(x + y)/2‖ ≤ 1− δ.
openaire +2 more sources
Uniformly smooth renormings of uniformly convex Banach spaces
Journal of Soviet Mathematics, 1985In this note we study the quantitative side of the famous Enflo-Pisier theorem on the possibility of equivalent uniformly smooth renormings of superreflexive Banach spaces (in particular, uniformly convex and uniformly nonsquare ones). Typical re result: let the modulus of convexity of the space X, which has a locally unconditional structure, satisfy ...
openaire +2 more sources
Smoothness of the distribution of the norm in uniformly convex Banach spaces
Journal of Theoretical Probability, 1990Let (E, ‖ · ‖) be a uniformly convex Banach space of power type. In this paper we investigate differentiability properties of the distribution function of the norm of a random series with one-dimensional independent components inE.
Michał Ryznar, Tomasz Byczkowski
openaire +2 more sources