Results 11 to 20 of about 3,452 (76)
Supersymmetric vertex algebras
We define and study the structure of SUSY Lie conformal and vertex algebras.
A. Malikov +13 more
core +2 more sources
GL‐algebras in positive characteristic II: The polynomial ring
Abstract We study GL$\mathbf {GL}$‐equivariant modules over the infinite variable polynomial ring S=k[x1,x2,…,xn,…]$S = k[x_1, x_2, \ldots, x_n, \ldots]$ with k$k$ an infinite field of characteristic p>0$p > 0$. We extend many of Sam–Snowden's far‐reaching results from characteristic zero to this setting.
Karthik Ganapathy
wiley +1 more source
Representation theory of super Yang-Mills algebras [PDF]
We study in this article the representation theory of a family of super algebras, called the \emph{super Yang-Mills algebras}, by exploiting the Kirillov orbit method \textit{\`a la Dixmier} for nilpotent super Lie algebras.
A. Connes +22 more
core +2 more sources
Real models for the framed little n$n$‐disks operads
Abstract We study the action of the orthogonal group on the little n$n$‐disks operads. As an application we provide small models (over the reals) for the framed little n$n$‐disks operads. It follows in particular that the framed little n$n$‐disks operads are formal (over the reals) for n$n$ even and coformal for all n$n$.
Anton Khoroshkin, Thomas Willwacher
wiley +1 more source
Structure theorems for braided Hopf algebras
Abstract We develop versions of the Poincaré–Birkhoff–Witt and Cartier–Milnor–Moore theorems in the setting of braided Hopf algebras. To do so, we introduce new analogs of a Lie algebra in the setting of a braided monoidal category, using the notion of a braided operad.
Craig Westerland
wiley +1 more source
Symmetrizable Quantum Affine Superalgebras And Their Representations
Aspects of the algebraic structure and representation theory of the quantum affine superalgebras with symmetrizable Cartan matrices are studied. The irreducible integrable highest weight representations are classified, and shown to be deformations of ...
Drinfeld V. G., R. B. Zhang
core +3 more sources
Existence and orthogonality of stable envelopes for bow varieties
Abstract Stable envelopes, introduced by Maulik and Okounkov, provide a family of bases for the equivariant cohomology of symplectic resolutions. They are part of a fascinating interplay between geometry, combinatorics and integrable systems. In this expository article, we give a self‐contained introduction to cohomological stable envelopes of type A$A$
Catharina Stroppel, Till Wehrhan
wiley +1 more source
Wigner Oscillators, Twisted Hopf Algebras and Second Quantization
By correctly identifying the role of central extension in the centrally extended Heisenberg algebra h, we show that it is indeed possible to construct a Hopf algebraic structure on the corresponding enveloping algebra U(h) and eventually deform it ...
B. Chakraborty +4 more
core +2 more sources
Holomorphic field theories and higher algebra
Abstract Aimed at complex geometers and representation theorists, this survey explores higher dimensional analogs of the rich interplay between Riemann surfaces, Virasoro and Kac‐Moody Lie algebras, and conformal blocks. We introduce a panoply of examples from physics — field theories that are holomorphic in nature, such as holomorphic Chern‐Simons ...
Owen Gwilliam, Brian R. Williams
wiley +1 more source
Functorial constructions related to double Poisson vertex algebras
Abstract For any double Poisson algebra, we produce a double Poisson vertex algebra using the jet algebra construction. We show that this construction is compatible with the representation functor which associates to any double Poisson (vertex) algebra and any positive integer a Poisson (vertex) algebra.
Tristan Bozec +2 more
wiley +1 more source

