Results 131 to 140 of about 513,428 (333)

Z‐Scheme Water Splitting Systems Based on Solid‐State Electron Conductors

open access: yesAdvanced Functional Materials, EarlyView.
This review examines the latest advances in Z‐scheme overall water splitting (OWS) systems for solar hydrogen production. These systems consist of suspended or immobilized hydrogen evolution photocatalysts (HEPs) and oxygen evolution photocatalysts (OEPs).
Chen Gu   +3 more
wiley   +1 more source

Biodegradable and Recyclable Luminescent Mixed‐Matrix‐Membranes, Hydrogels, and Cryogels based on Nanoscale Metal‐Organic Frameworks and Biopolymers

open access: yesAdvanced Functional Materials, EarlyView.
The study presents biodegradable and recyclable mixed‐matrix membranes (MMMs), hydrogels, and cryogels using luminescent nanoscale metal‐organic frameworks (nMOFs) and biopolymers. These bio‐nMOF‐MMMs combine europium‐based nMOFs as probes for the status of the materials with the biopolymers agar and gelatine and present alternatives to conventional ...
Moritz Maxeiner   +4 more
wiley   +1 more source

Metal‐Organic Framework Embedded Electrospun Fibrous Membranes‐Based Hybrid Nanogenerators with Hierarchical Modified Polyamide Films for Mechanical Energy Harvesting and IoT Applications

open access: yesAdvanced Functional Materials, EarlyView.
Hybrid nanogenerator (HNG) based on a zinc‐metal‐organic framework‐loaded fibrous film integrated with a hierarchically modified nylon film having micropatterns and micropores is fabricated via an electrospinning technique, and its electrical properties are optimized. The HNGs are incorporated into wearable garments and automobile systems for practical
Sontyana Adonijah Graham   +6 more
wiley   +1 more source

Laser‐Induced Graphene from Waste Almond Shells

open access: yesAdvanced Functional Materials, EarlyView.
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy