Results 251 to 260 of about 513,428 (333)

An In Situ Study of the Topochemical Transformation of Hybrid Layered Hydroxides Into Metallic Nanocomposites

open access: yesAdvanced Functional Materials, EarlyView.
Herein, the topochemical transformation of cobalt‐based layered hydroxides into nanocomposites is investigated using advanced real‐time characterization techniques combined with thermogravimetric analysis. The study reveals how interlayer carboxylic acids direct the transformation pathway, highlighting the role of carbon content and anion length. These
Camilo Jaramillo‐Hernández   +5 more
wiley   +1 more source

Multiple Twinning in Nacre and Aragonite

open access: yesAdvanced Functional Materials, EarlyView.
Electron backscatter diffraction map of a cluster of geologic aragonite, exhibiting single, double, and triple twins. The whole cluster is approximately 2 cm wide. Colors indicate crystal orientations, so that pixels where the a‐, b‐, and c‐axis is perpendicular to the image plane are green, red, and blue, respectively.
Connor A. Schmidt   +7 more
wiley   +1 more source

Insight into the Internal Structure of Biogenic, Synthetic and Geological Apatite by Electron Microscopy and X‐Ray Scattering

open access: yesAdvanced Functional Materials, EarlyView.
Apatite occurs in many forms in nature, e.g. in teeth and geological minerals. Internally, biological apatite contains nanocrystals that are also found in synthetically prepared calcium phosphate nanoparticles which are used in biomedicine, e.g. for gene and drug delivery and for bone regeneration. Abstract Calcium phosphate is the inorganic component (
Kathrin Kostka   +3 more
wiley   +1 more source

Solvent‐Free Bonding Mechanisms and Microstructure Engineering in Dry Electrode Technology for Lithium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Dry electrode technology revolutionizes battery manufacturing by eliminating toxic solvents and energy‐intensive drying. This work details two promising techniques: dry spray deposition and polymer fibrillation. How their unique solvent‐free bonding mechanisms create uniform microstructures for thicker, denser electrodes, boosting energy density and ...
Yuhao Liang   +7 more
wiley   +1 more source

Laser‐Based Sculpturing of Embedded Ultrathin Metal‐Oxide Nanopores for Enhanced Biomolecular Sensing

open access: yesAdvanced Functional Materials, EarlyView.
Controlled laser‐drilling of embedded HfO2 membranes creates three layer nanopores with Gaussian‐shaped cavities sculptured in the supporting layers. These embedded solid‐state nanopores slow DNA translocation by 12‐fold compared to SiNx pores, enabling high‐resolution, label‐free detection of short DNAs, RNAs, and proteins.
Jostine Joby   +4 more
wiley   +1 more source

Molecular Cross‐Linking of MXenes: Tunable Interfaces and Chemiresistive Sensing

open access: yesAdvanced Functional Materials, EarlyView.
In this study, Ti3C2Tx MXenes are initially functionalized using oleylamine ligands to form stable dispersions in an organic solvent. Subsequently ligand exchange with α,ω‐diaminoalkanes enables cross‐linking, along with precise tuning of interfaces. This structural control translates into tunable charge transport and responsive VOC sensing, showing ...
Yudhajit Bhattacharjee   +12 more
wiley   +1 more source

4D Mapping of ZIF Biocomposites for High Protein Loading and Tunable Release Profiles

open access: yesAdvanced Functional Materials, EarlyView.
Systematic four‐dimensional mapping of zeolitic imidazolate framework biocomposites reveals how precursor ratios, total concentration, and washing define crystalline phase, protein loading, and release kinetics. This comprehensive study identifies conditions yielding record loading (∼85%) and precise phase–property correlations.
Michael R. Hafner   +12 more
wiley   +1 more source

High‐Yield Synthesis of Fe‐NC Electrocatalysts Using Mg2+ Templating and Schiff‐Base Porous Organic Polymers

open access: yesAdvanced Functional Materials, EarlyView.
Fe─NC porous oxygen reduction electrocatalysts are prepared employing a 2,4,6‐Triaminopyrimidine‐based porous organic polymer, a Mg2+ Lewis acid, and a low‐temperature cation exchange protocol. Using the polymer precursor achieves high pyrolysis yields and results in atomically dispersed FeNx sites. The resulting catalysts feature hierarchical porosity
Eliot Petitdemange   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy