Results 261 to 270 of about 513,428 (333)

Microplastics from Wearable Bioelectronic Devices: Sources, Risks, and Sustainable Solutions

open access: yesAdvanced Functional Materials, EarlyView.
Bioelectronic devices (e.g., e‐skins) heavily rely on polymers that at the end of their life cycle will generate microplastics. For research, a holistic approach to viewing the full impact of such devices cannot be overlooked. The potential for devices as sources for microplastics is raised, with mitigation strategies surrounding polysaccharide and ...
Conor S. Boland
wiley   +1 more source

Three‐dimensional Antimony Sulfide Based Flat Optics

open access: yesAdvanced Functional Materials, EarlyView.
This work presents the development of a grayscale electron beam lithography (g‐EBL) method for fabricating antimony trisulfide (Sb2S3) nanostructures with customizable 3D profiles. The refractive index of g‐EBL patterned Sb2S3 is determined based on the synergy of genetic algorithm and transfer matrix method.
Wei Wang   +18 more
wiley   +1 more source

Universal Neuromorphic Element: NbOx Memristor with Co‐Existing Volatile, Non‐Volatile, and Threshold Switching

open access: yesAdvanced Functional Materials, EarlyView.
A W/NbOx/Pt memristor demonstrates the coexistence of volatile, non‐volatile, and threshold switching characteristics. Volatile switching serves as a reservoir computing layer, providing dynamic short‐term processing. Non‐volatile switching, stabilized through ISPVA, improves reliable long‐term readout. Threshold switching operates as a leaky integrate
Ungbin Byun, Hyesung Na, Sungjun Kim
wiley   +1 more source

Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics

open access: yesAdvanced Functional Materials, EarlyView.
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha   +18 more
wiley   +1 more source

Trap‐Modified Inverted Organic Photodetectors via Layer‐by‐Layer Processing with Poly(N‐vinylcarbazole) Additives

open access: yesAdvanced Functional Materials, EarlyView.
Trap state engineering in inverted organic photodetectors (OPDs) is achieved via combined layer‐by‐layer (LbL) processing and poly(N‐vinylcarbazole) (PVK) incorporation. LbL reduces the trap density while PVK additives gradually shift trap states from shallow band‐edge to deep mid‐gap levels, tailoring the energy distribution.
Jingwei Yi   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy