Results 221 to 230 of about 5,879,357 (336)
Automatic Determination of Quasicrystalline Patterns from Microscopy Images
This work introduces a user‐friendly machine learning tool to automatically extract and visualize quasicrystalline tiling patterns from atomically resolved microscopy images. It uses feature clustering, nearest‐neighbor analysis, and support vector machines. The method is broadly applicable to various quasicrystalline systems and is released as part of
Tano Kim Kender +2 more
wiley +1 more source
Unsupervised learning reveals landscape of local structural motifs across protein classes. [PDF]
Derry A +3 more
europepmc +1 more source
A novel convolutional neural network architecture enables rapid, unsupervised analysis of IR spectroscopic data from DRIFTS and IRRAS. By combining synthetic data generation with parallel convolutional layers and advanced regularization, the model accurately resolves spectral features of adsorbed CO, offering real‐time insights into ceria surface ...
Mehrdad Jalali +5 more
wiley +1 more source
Tumor detection on bronchoscopic images by unsupervised learning. [PDF]
Liu Q, Zheng H, Jia Z, Shi Z.
europepmc +1 more source
Electrospinning allows the fabrication of fibrous 3D cotton‐wool‐like scaffolds for tissue engineering. Optimizing this process traditionally relies on trial‐and‐error approaches, and artificial intelligence (AI)‐based tools can support it, with the prediction of fiber properties. This work uses machine learning to classify and predict the structure of
Paolo D’Elia +3 more
wiley +1 more source
Detecting deformation mechanisms of metals from acoustic emission signals through knowledge-driven unsupervised learning. [PDF]
Gou B +6 more
europepmc +1 more source
Artificial Intelligence for Bone: Theory, Methods, and Applications
Advances in artificial intelligence (AI) offer the potential to improve bone research. The current review explores the contributions of AI to pathological study, biomarker discovery, drug design, and clinical diagnosis and prognosis of bone diseases. We envision that AI‐driven methodologies will enable identifying novel targets for drugs discovery. The
Dongfeng Yuan +3 more
wiley +1 more source
Unsupervised Learning-Derived Complex Metabolic Signatures Refine Cardiometabolic Risk. [PDF]
Zhou Y +5 more
europepmc +1 more source
Leveraging Unsupervised Learning for Cost-Effective Visual Anomaly Detection [PDF]
Y. F. Long +4 more
openalex +1 more source
Deep Learning‐Assisted Coherent Raman Scattering Microscopy
The analytical capabilities of coherent Raman scattering microscopy are augmented through deep learning integration. This synergistic paradigm improves fundamental performance via denoising, deconvolution, and hyperspectral unmixing. Concurrently, it enhances downstream image analysis including subcellular localization, virtual staining, and clinical ...
Jianlin Liu +4 more
wiley +1 more source

