Results 211 to 220 of about 225,900 (285)

Self‐Assembled Monolayers in p–i–n Perovskite Solar Cells: Molecular Design, Interfacial Engineering, and Machine Learning–Accelerated Material Discovery

open access: yesAdvanced Materials, EarlyView.
This review highlights the role of self‐assembled monolayers (SAMs) in perovskite solar cells, covering molecular engineering, multifunctional interface regulation, machine learning (ML) accelerated discovery, advanced device architectures, and pathways toward scalable fabrication and commercialization for high‐efficiency and stable single‐junction and
Asmat Ullah, Ying Luo, Stefaan De Wolf
wiley   +1 more source

Toward a Consensus Characterization Protocol for Organic Thermoelectrics

open access: yesAdvanced Materials, EarlyView.
We advocate a common consensus on accurate and standardized reporting of performance metrics in the field of organic thermoelectrics. We summarize prevalent issues in the literature and propose a pre‐submission checklist to support the publication of reproducible results.
Bernhard Dörling   +14 more
wiley   +1 more source

Ultrasound in Women's Health: Mechanisms, Applications, and Emerging Opportunities

open access: yesAdvanced Materials, EarlyView.
As healthcare moves toward decentralization, ultrasound technologies are evolving from strictly imaging tools in clinical settings into versatile diagnostic and therapeutic platforms, with growing roles addressing women's health needs. This review highlights how ultrasound's underlying physical mechanisms can be harnessed to reduce disparities in women'
Sarah B. Ornellas   +7 more
wiley   +1 more source

Scalable and Multifunctional PAN‐MXene Composite Fibers for Thermal Management, Photothermal Conversion, Energy Harvesting, and Sensing for Wearable Applications

open access: yesAdvanced Materials, EarlyView.
Electrospun PAN‐MXene nanofibers and yarns integrate enhanced thermal conductivity, photothermal conversion, and triboelectric energy harvesting within a flexible architecture. Interconnected MXene networks promote efficient phonon transport, while their surface chemistry strengthens tribo‐negative behavior, enabling a high power density of 432.7 mW m ...
Ahmadreza Moradi   +2 more
wiley   +1 more source

Cancer Cells Traverse Faster in Confined Space by Modifying Vimentin filaments With Nuclear Deformation and Promoting the Growth of Desired Tumor Spheroids

open access: yesAdvanced Materials Interfaces, EarlyView.
This study demonstrates how the Vimentin intermediate (VIM) filaments distribution/density regulates the attainment of different migration modes through cytoskeleton rearrangement and controls the nuclear morphology in migrating cells under physical confinement, which facilitates the faster traversing of those cells and the growth of post‐migration ...
Md Kowsar Alam   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy