Results 171 to 180 of about 50,397 (308)

Strain control of the electronic structure in WS<sub>2</sub> homobilayers with 0° and 60° stacking angles.

open access: yesNanoscale
Jadriško V   +8 more
europepmc   +1 more source

Solar Heating Enhanced Selective Recovery of Metal Ions Through Flowing Electrodes Enabled by Hybrid Carbon Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
A new electrochemical system based on a microporous hybrid of carbon nanoplatelets and nanotubes to selectively capture Ni2+ from wastewater is constructed. The system temperature rises rapidly when irradiated with sunlight, which enhances the Ni2+ removal rate by 250% and the selectivity by 53%, and the energy consumption is also reduced by 51 ...
Ziquan Wang   +11 more
wiley   +1 more source

Highly Reversible Positive‐Valence Conversion of Sulfur Chemistry for High‐Voltage Zinc–Sulfur Batteries [PDF]

open access: hybrid
Ze Chen   +8 more
openalex   +1 more source

Exciton Binding Energy Modulation in 2D Perovskites: A Phenomenological Keldysh Framework

open access: yesAdvanced Functional Materials, EarlyView.
The intrinsic screening effects are successfully decoupled from structural distortion by rigorously designing a series of 2D perovskites. This enabled us to demonstrate how the dielectric environment modulates the quasiparticle bandgap and exciton binding energy.
Kitae Kim   +15 more
wiley   +1 more source

A Single‐Metal‐Doped Nanoplatform for Ferroptosis‐Driven cGAS‐STING Pathway Activation in Hepatocellular Carcinoma Immunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
The cGAS‐STING pathway boosts HCC antitumor immunity but lacks specific activation. Nanoplatform ZMRPF induces HCC ferroptosis via lipid ROS, releasing mtDNA. It synergizes with ZMRPF‐released Mn2⁺ to activate cGAS‐STING, amplifies antigen‐presenting cell activity, reverses HCC immunosuppression, and enables robust systemic antitumor immunity ...
Yuchen Zhang   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy