Results 231 to 240 of about 1,168,088 (334)

Cu2O/Cu Chiral Catalysts for Highly Selective Solar‐Assisted CO2‐to‐CO Electroreduction

open access: yesAdvanced Functional Materials, EarlyView.
To address the poor target‐product selectivity of the eCO2RR, breakthrough approaches based on the chiral‐induced spin selectivity phenomenon enhance the Faradaic efficiency (FE) for target hydrocarbons, such as CO. To induce this spin polarization strategy in Cu2O/Cu catalysts, it is proposed using amine‐based intermediate organic molecules with ...
Hyungsoo Lee   +13 more
wiley   +1 more source

Highly Active Air Electrode with Enhanced Proton Conduction via Isovalent Doping in a Layered Perovskite for Reversible Protonic Ceramic Cells

open access: yesAdvanced Functional Materials, EarlyView.
A Ni‐doped PBSCN20 air electrode is proposed as a promising air electrode material for reversible protonic ceramic cells. An isovalent doping significantly facilitates oxygen vacancy formation and proton uptake while simultaneously reducing the energy barrier for proton migration.
Jiwon Yun   +7 more
wiley   +1 more source

Time-Dependent Particle-Breaking Hartree-Fock Model for Electronically Open Molecules. [PDF]

open access: yesJ Phys Chem A
Pedersen J   +4 more
europepmc   +1 more source

Polaronic and Electrochemical Signatures in Group IVB (Ti, Zr, Hf) Oxides: Unified SKP–DFT Insights for Tunable Transport in Energy and Electronic Devices

open access: yesAdvanced Functional Materials, EarlyView.
Charge carrier concentration and mobility in TiO2, ZrO2, and HfO2 powder films are experimentally mapped as a function of temperature. The results uncover polaron‐mediated transport regimes and field‐activated conduction, enabling the design of oxide‐based electronic and energy devices with thermally tunable functionality.
Beatriz Moura Gomes   +3 more
wiley   +1 more source

Remodeling Interfacial Electrical Field for Superhigh Capacity and Ultralong Lifespan Aqueous Zinc‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The design of cathode materials is the key to solving the practical application of AZIBs. In this work, the formation of the built‐in electric field in the NVO@CC material adjusts the electronic structure, showing high specific capacity and ultra‐long cycle stability, and achieving rapid diffusion of ions and good electrochemical kinetics.
Yan Ran   +7 more
wiley   +1 more source

Additive‐Driven Phase Control for Stable and Efficient CsPbI₃ Solar Cells Via Ambient Low‐Temperature Processing

open access: yesAdvanced Functional Materials, EarlyView.
CsPbI₃ perovskite solar cells face stability issues due to high annealing temperatures and moisture. Butylammonium acetate (BAAc) enables stable phase formation at 160°C in ambient laboratory conditions, enhancing efficiency and stability, achieving 18.6% PCE, and maintaining over 81% efficiency after 1,000 hours of maximum power point tracking under 1
Narendra Pai   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy