Results 51 to 60 of about 10,902 (248)
Plastically flexible single crystals of the bimetallic phosphonate framework [Cu(2,2′‐bpy)VO(O3PC6H5)2] combine mechanical adaptability with robust pseudocapacitive charge storage. The material delivers about 140 Fg−1 at pH 4 and pH 10 and remains stable across pH 2‐12, enabling energy storage under comparatively mild electrolyte conditions.
Tim Müller +11 more
wiley +1 more source
We present the first results of an anion exchange ionomer membrane, hexamethyl-p-terphenyl poly(benzimidazolium) (HMT-PMBI), in a vanadium redox flow battery.
Brian Shanahan +7 more
doaj +1 more source
The electrochemical characterisation of graphite felts [PDF]
NOTICE: this is the authors' version of a work that was accepted for publication in Journal of Electroanalytical Chemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality
Amatore +35 more
core +1 more source
Ordered three‐dimensional anodic aluminum oxide (3D‐AAO) nanoarchitectures with longitudinal and transverse pores enable architecture‐driven metamaterials. The review maps fabrication advances, including hybrid pulse anodization, and shows how 3D‐AAO templates tailor properties across magnetism, energy, catalysis, and sensing.
Marisol Martín‐González
wiley +1 more source
Imidazolium Cation‐Stabilized Interfacial Chemistry for Durable Aqueous Cadmium‐Iodine Batteries
An aqueous cadmium‐iodine (Cd//I2) battery is constructed through interfacial chemistry regulation. The cadmium anode effectively suppresses parasitic hydrogen evolution and enhances anode stability, while the incorporation of BMIM+ additives anchors polyiodide species, alleviating the polyiodide shuttle effect and reinforcing interfacial robustness ...
Wenjing Li +9 more
wiley +2 more sources
On charge percolation in slurry electrodes used in vanadium redox flow batteries
In vanadium redox flow battery systems porous carbon felts are commonly employed as electrodes inside the flow channel. Recently, slurry electrodes (or flow suspension electrodes) were introduced as a potentially viable electrode system.
Johannes Lohaus +4 more
doaj +1 more source
Multiphysics Finite\u2013Element Modelling of an All\u2013Vanadium Redox Flow Battery for Stationary Energy Storage [PDF]
All-Vanadium Redox Flow Batteries (VRFBs) are emerging as a novel technology for stationary energy storage. Numerical models are useful for exploring the potential performance of such devices, optimizing the structure and operating condition of cell ...
Bertucco, Alberto +4 more
core +1 more source
Perspective on Aqueous Batteries: Historical Milestones and Modern Revival
This review retraces the development of aqueous batteries from classical Zn‐MnO2 chemistry to modern Zn and Ni systems, correlating voltage, capacity, and electrolyte formulation with practical performance. By mapping historical success and failure onto current and future research directions, it identifies guiding principles that steer the design of ...
Fangwang Ming +5 more
wiley +1 more source
Ultra‐Low‐Cost Hydrophobic Organic Coating for Highly Reversible Zinc Anodes
A nanoscale hydrophobic 1,3‐Di(o‐tolyl)thiourea (DTH) layer (<14 nm) was deposited on zinc anodes for durable aqueous Zn‐ion batteries, costing merely 1.43×10−7 USD·Ah−1. By suppressing side reactions and dendrites, it achieved 2500‐cycle coin cells and a 143 Wh·kg−1 pouch cell (1200 cycles) with a record‐low additive cost (7.02×10−7 USD).
Shixun Wang +12 more
wiley +2 more sources
Tracing the evolution from structural regulation to multifunctional integration, this paper systematically analyzes modification strategies for carbon‐based electrodes. It evaluates how element doping, surface functionalization, and composite material design affect the electrode performance, and offers perspectives on future applications and challenges
Yunlei Wang +4 more
wiley +1 more source

