Results 321 to 330 of about 4,806,779 (356)
Some of the next articles are maybe not open access.

Bourgain, Brezis and Mironescu theorem for fractional Sobolev spaces with variable exponents

Annali di Matematica Pura ed Applicata, 2022
A Bourgain–Brezis–Mironescu-type theorem for fractional Sobolev spaces with variable exponents is established for sufficiently regular functions. We prove, however, that a limiting embedding theorem for these spaces fails to hold in general.
Minhyun Kim
semanticscholar   +1 more source

A supercritical variable exponent problem

Journal of Mathematical Analysis and Applications, 2022
Abstract Suppose B 1 is the open unit ball centered at the origin in R N with N ≥ 3 and 1 p N + 2 N − 2 . Let 0 σ 1 1 and suppose 0 ≤ γ ( x ) ≤ − σ 1 ln ⁡ ( | x | ) with γ = 0 near | x | = 1 and γ → ∞ as | x | → 0 .
Asadollah Aghajani, Craig Cowan
openaire   +2 more sources

Gradient Estimates of ω-Minimizers to Double Phase Variational Problems with Variable Exponents

, 2021
We are concerned with an optimal regularity for ω-minimizers to double phase variational problems with variable exponents where the associated energy density is allowed to be discontinuous. We identify basic structure assumptions on the density for the
Sun-Sig Byun, Ho-Sik Lee
semanticscholar   +1 more source

Extrapolation to weighted Morrey spaces with variable exponents and applications

Proceedings of the Edinburgh Mathematical Society, 2021
This paper establishes the mapping properties of pseudo-differential operators and the Fourier integral operators on the weighted Morrey spaces with variable exponents and the weighted Triebel–Lizorkin–Morrey spaces with variable exponents.
K. Ho
semanticscholar   +1 more source

On the existence and stability of a nonlinear wave system with variable exponents

, 2021
Problems with variable exponents have attracted a great deal of attention lately and various existence, nonexistence and stability results have been established.
S. Messaoudi   +3 more
semanticscholar   +1 more source

Marcinkiewicz spaces with variable exponents

Georgian Mathematical Journal
Marcinkiewicz spaces with variable exponents are defined and some basic properties are given.
Liuye Xia   +3 more
semanticscholar   +1 more source

Variable-order fractional Sobolev spaces and nonlinear elliptic equations with variable exponents

, 2020
A new fractional function space Xk(⋅),α(⋅)(Ω) with variable exponents k, α and its relaxed properties are established in this paper. Under this configuration, the comparison principle of the fractional α(⋅)-Laplace operator and a priori estimate of weak ...
Yi Cheng, B. Ge, R. Agarwal
semanticscholar   +1 more source

Variable exponent Campanato spaces

Journal of Mathematical Sciences, 2010
We study variable exponent Campanato spaces on spaces of homogeneous type. We prove an embedding result between variable exponent Campanato spaces. We also prove that these spaces are equivalent, up to norms, to variable exponent Morrey spaces L p(·),λ(·) (X) with λ+ < 1 and variable exponent ...
Humberto Rafeiro, Stefan Samko
openaire   +2 more sources

Variable exponent Bergman spaces

Nonlinear Analysis: Theory, Methods & Applications, 2014
Abstract In this article we define variable exponent Bergman spaces and show that polynomials are dense in the spaces. We also show that the Bergman projection and the Berezin transform are bounded in these spaces.
Gerardo R. Chacón   +2 more
openaire   +2 more sources

On the Riesz potential operator of variable order from variable exponent Morrey space to variable exponent Campanato space

Mathematical Methods in the Applied Sciences, 2020
For the Riesz potential of variable order over bounded domains in Euclidean space, we prove the boundedness result from variable exponent Morrey spaces to variable exponent Campanato spaces. A special attention is paid to weaken assumptions on variability of the Riesz potential.
Rafeiro, Humberto, Samko, Stefan
openaire   +3 more sources

Home - About - Disclaimer - Privacy