Results 211 to 220 of about 921,049 (277)
Seeing inside the Body Using Wearable Sensing and Imaging Technologies
This review explores wearable technologies for noninvasive internal health monitoring. It categorizes approaches into indirect sensing (e.g., bioelectrical and biochemical signals) and direct imaging (e.g., wearable ultrasound and EIT), highlighting multimodal integration and system‐level innovation toward personalized, continuous healthcare.
Sumin Kim +3 more
wiley +1 more source
This study presents a bone‐on‐a‐chip platform incorporating TPMS scaffolds to study geometry‐dependent osteogenesis under dynamic flow. By tuning pore shape and solidity, it precisely controls mechanical cues, revealing how topological features and shear stress affect osteogenic differentiation and matrix formation.
Donggyu Kim +5 more
wiley +1 more source
Secondary School Variables in Predicting Technology, Engineering, Mathematics (TEM) Major Choice
Philip Ruse, Yonghong Jade Xu
openalex +2 more sources
AI‐Assisted Design and Evaluation of SLM‐Ti64 Implants for Enhanced Bone Regeneration
AI‐driven simulations of biological healing, combining biomechanical modeling and machine learning, enable personalized orthopedic treatments. By decoding healing patterns influenced by implants and patient‐specific factors, this approach advances fracture repair understanding, optimizes implant design, and supports precision medicine and sustainable ...
Muhammad Usama Zaheer +3 more
wiley +1 more source
Computational Modeling of Reticular Materials: The Past, the Present, and the Future
Reticular materials are advanced materials with applications in emerging technologies. A thorough understanding of material properties at operating conditions is critical to accelerate the deployment at an industrial scale. Herein, the status of computational modeling of reticular materials is reviewed, supplemented with topical examples highlighting ...
Wim Temmerman +3 more
wiley +1 more source
Hierarchically MOF‐Based Porous Monolith Composites for Atmospheric Water Harvesting
This review explores the design of hierarchical porous materials for atmospheric water harvesting, focusing on metal‐organic frameworks (MOFs) and porous monoliths. Emphasis is placed on integrating MOF nanoscale porosity with the microscale channels of monolithic scaffolds to enhance sorption‐desorption performance.
Mahyar Panahi‐Sarmad +7 more
wiley +1 more source

