Results 191 to 200 of about 26,900 (296)

Modulating Electrochemical CO2 Reduction Pathways via Interfacial Electric Field

open access: yesAdvanced Functional Materials, EarlyView.
Engineering interfacial electric fields in Cu/ITO electrodes enables precise control of CO2 reduction pathways. Charge transfer from Cu to ITO generates positively charged Cu species that steer selectivity from ethylene toward methane. This work demonstrates how interfacial electric‐field modulation can direct reaction intermediates and transform ...
Mahdi Salehi   +7 more
wiley   +1 more source

Emergence of Light‐Transforming Layered Hybrid Halide Perovskites

open access: yesAdvanced Functional Materials, EarlyView.
The emerging class of light‐transforming layered halide perovskite materials is reviewed, outlining challenges for their development and perspectives toward application in the future. Abstract Layered hybrid halide perovskites (LHPs) have attracted considerable attention in optoelectronics.
Ghewa AlSabeh, Jovana V. Milić
wiley   +1 more source

CO2 Reduction on Copper‐Nitrogen‐Doped Carbon Catalysts Tuned by Pulsed Potential Electrolysis: Effect of Pulse Potential

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán   +13 more
wiley   +1 more source

Positive‐Tone Nanolithography of Antimony Trisulfide with Femtosecond Laser Wet‐Etching

open access: yesAdvanced Functional Materials, EarlyView.
A butyldithiocarbamic acid (BDCA) etchant is used to fabricate various micro‐ and nanoscale structures on amorphous antimony trisulfide (a‐Sb2S3) thin film via femtosecond laser etching. Numerical analysis and experimental results elucidate the patterning mechanism on gold (reflective) and quartz (transmissive) substrates.
Abhrodeep Dey   +12 more
wiley   +1 more source

Continuous‐Flow Photocatalytic Degradation of Glyphosate and Aminomethylphosphonic Acid Under Simulated Sunlight with TiO2‐Coated Poly(vinylidene fluoride) Membrane

open access: yesAdvanced Functional Materials, EarlyView.
Glyphosate (GLY) and its primary metabolite, aminomethylphosphonic acid (AMPA), are photodegraded using a poly(vinylidene fluoride) membrane with immobilized titanium dioxide (PVDF‐TiO2) in a continuous flow‐through operation under solar light. At optimized conditions, the PVDF‐TiO2 membrane achieved 95% GLY and 80% AMPA removal with •O2− as the ...
Phuong B. Trinh   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy