Results 201 to 210 of about 32,330 (255)

The morphology of the oval window in Paranthropus robustus compared to humans and other modern primates

open access: yesThe Anatomical Record, EarlyView.
Abstract The oval window (OW) is an opening connecting the inner and middle ear. Its area has been shown to consistently scale with body mass (BM) in primates, and has been used alongside semi‐circular canal (SCC) size to differentiate Homo sapiens and fossil hominins, including Paranthropus robustus.
Ruy Fernandez, José Braga
wiley   +1 more source

An effective PO-RSNN and FZCIS based diabetes prediction and stroke analysis in the metaverse environment. [PDF]

open access: yesSci Rep
Karpagam M   +6 more
europepmc   +1 more source

Variational method for elliptic systems with discontinuous nonlinearities

open access: closedSbornik: Mathematics, 2021
Abstract A system of two elliptic equations with discontinuous nonlinearities and homogeneous Dirichlet boundary conditions is studied. Existence theorems for strong and semiregular solutions are deduced using a variational method. A strong solution is called semiregular if the set on which the values of the solution are points of ...
В. Н. Павленко, D. K. Potapov
openalex   +3 more sources

Existence of Solutions for a Class of Semilinear Elliptic Systems via Variational Methods [PDF]

open access: closed, 2013
This is concerned with the existence of solutions to a class of semilinear elliptic systems of the form $$\displaystyle{\left \{\begin{array}{ll} - div(a(x)\nabla u) = \lambda F_{u}(x,u,v)&\mathrm{in}\,\varOmega, \\ - div(b(x)\nabla v) = \lambda F_{v}(x,u,v) &\mathrm{in}\,\varOmega, \\ u = v = 0 &\mathrm{on}\,\partial \varOmega, \end{array} \right.}
G. A. Afrouzi, M. Mirzapour
openalex   +2 more sources

Вариационный метод для эллиптических систем с разрывными нелинейностями

Математический сборник, 2021
Изучается система из двух эллиптических уравнений с разрывными нелинейностями и однородными граничными условиями Дирихле. Вариационным методом получены теоремы существования сильных и полуправильных решений. Сильное решение называется полуправильным, если мера множества, на котором значения решения являются точками разрыва нелинейности по фазовой ...
Vyacheslav Nikolaevich Pavlenko   +1 more
openaire   +1 more source

Home - About - Disclaimer - Privacy