Results 231 to 240 of about 867,365 (301)

MagPiezo: A Magnetogenetic Platform for Remote Activation of Endogenous Piezo1 Channels in Endothelial Cells

open access: yesAdvanced Functional Materials, EarlyView.
MagPiezo enables wireless activation of endogenous Piezo1 channels without genetic modification using 19 nm magnetic nanoparticles and low‐intensity magnetic fields. It generates torque forces at the piconewton scale to trigger mechanotransduction in endothelial cells, standing as a novel platform to interrogate and manipulate Piezo1 activity in vitro.
Susel Del Sol‐Fernández   +7 more
wiley   +1 more source

Laser Engineering of HfN‐Based Nanoparticles for Safe NIR‐I Photothermal and X‐ray Enhancing Cancer Therapies

open access: yesAdvanced Functional Materials, EarlyView.
In this study, we produced HfN‐based nanoparticles via femtosecond laser ablation in acetone. The nanoparticles exhibit a red‐shifted plasmonic resonance in the NIR‐I window, colloidal stability after coating with polyethyleneglycol, and excellent biocompatibility. The photothermal and X‐ray sensitization therapeutic effects were demonstrated for tumor
Julia S. Babkova   +15 more
wiley   +1 more source

Tissue Engineered Human Elastic Cartilage From Primary Auricular Chondrocytes for Ear Reconstruction

open access: yesAdvanced Functional Materials, EarlyView.
Despite over three decades of research, no tissue‐engineered solution for auricular reconstruction in microtia patients has reached clinical translation. The key challenge lies in generating functional elastic cartilage ex vivo. Here, we integrate synergistic cell‐biomaterial strategies to engineer auricular grafts with mechanical and histological ...
Philipp Fisch   +13 more
wiley   +1 more source

Microfluidic Platform for Multiparametric Profiling of Fibrin Permeability, Fibrinolysis, and Cell Invasion

open access: yesAdvanced Functional Materials, EarlyView.
This paper introduces a single‐channel H‐junction microfluidic assay that profiles fibrin's evolving function in repair and thrombosis by measuring, in one ∼3 µL gel, permeability, fibrinolysis kinetics, fibroblast invasion, and clot extension in real time.
Halston Deal   +9 more
wiley   +1 more source

Synergistic All‐in‐One Electroceutical Platform Utilizing a Plasma–Photodynamic Hybrid Approach for Enhanced Wound Healing

open access: yesAdvanced Functional Materials, EarlyView.
A flexible hybrid patch integrating a robust cold atmospheric plasma (CAP) system with a high‐power, ultrathin bio‐OLED was developed to enable synergistic wound healing. This multimodal therapy, combining plasma and photodynamic treatment, enhanced angiogenesis, cell proliferation, and collagen deposition, demonstrating superior in vivo efficacy and ...
Jun‐Yeop Song   +11 more
wiley   +1 more source

Nanotechnology and stem cells in vascular biology. [PDF]

open access: yesVasc Biol, 2019
Jadczyk T   +3 more
europepmc   +1 more source

Coagulative Granular Hydrogels with an Enzyme Catalyzed Fibrin Network for Endogenous Tissue Regeneration

open access: yesAdvanced Healthcare Materials, EarlyView.
Coagulative granular hydrogels are composed of packed thrombin‐functionalized microgels that catalyze the conversion of fibrinogen into a secondary fibrin network, filling the interstitial voids. This bio‐inspired approach stabilizes the biomaterial to match the robustness of bulk hydrogels without compromising injectability, mimicking the initial ...
Zhipeng Deng   +16 more
wiley   +1 more source

Translational Considerations for Injectable Biomaterials and Bioscaffolds to Repair and Regenerate Brain Tissue

open access: yesAdvanced Healthcare Materials, EarlyView.
The repair and regeneration of brain tissue faces both biological and technical challenges. Injectable bioscaffolds offer new opportunities to stimulate tissue regrowth in the brain by recruiting neural stem cells. Here, the translational issues are reviewed that need to be address to advance this promising new therapeutic approach from the bench to ...
Michel Modo, Alena Kisel
wiley   +1 more source

Decellularized Extracellular Matrix Scaffolds to Engineer the Dormant Landscape of Microscopic Colorectal Cancer Liver Metastasis

open access: yesAdvanced Healthcare Materials, EarlyView.
Decellularized liver extracellular matrix scaffolds provide a platform to study dormant liver‐metastatic colorectal cancer. They induce reversible dormancy, in combination with nutrient depletion and low dose chemotherapy, through cell cycle arrest and chemotherapy resistance.
Sabrina N. VandenHeuvel   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy