Results 221 to 230 of about 829,415 (307)

Directed Navigation of Magnetotactic Bacteria via Magnetotaxis in a 3D Vasculature‐On‐A‐Chip

open access: yesAdvanced Materials Technologies, EarlyView.
A perfusable vascular network is developed to investigate MTB at the single‐microorganism level. MTB is demonstrated to successfully align and navigate along the magnetic field inside the microvessels. Abstract Magnetotactic bacteria (MTB), inherently motile and self‐powered, are promising biorobotic candidates for targeted anti‐cancer drug delivery ...
Brianna Bradley   +6 more
wiley   +1 more source

Lattice Structures for Bone Replacement: The Intersection of Bone Biomechanics, Lattice Design, and Additive Manufacturing

open access: yesAdvanced Materials Technologies, EarlyView.
This review outlines how understanding bone's biology, hierarchical architecture, and mechanical anisotropy informs the design of lattice structures that replicate bone morphology and mechanical behavior. Additive manufacturing enables the fabrication of orthopedic implants that incorporate such structures using a range of engineering materials ...
Stylianos Kechagias   +4 more
wiley   +1 more source

Hydrogel Confinement Strategies for 3D Cell Culture in Microfluidic Systems

open access: yesAdvanced Materials Technologies, EarlyView.
Hydrogel confinement structures are key to organizing 3D cell cultures in microfluidic devices. This review classifies five structural strategies (micropillar, phaseguide, porous membrane, stepped‐height, and support‐free) and examines their trade‐offs alongside fabrication methods.
Soohyun Kim, Min Seok Lee, Sung Kyun Lee
wiley   +1 more source

Engineered Microfluidic Organoid Systems: New Paradigms for Menopause Mechanism Research and Personalized Medicine

open access: yesAdvanced Materials Technologies, EarlyView.
This review explores the integration of microfluidic technology with organoid systems as an innovative platform for studying menopausea complex multi‐organ condition. By enabling precise simulation of inter‐organ communication and hormone responses, microfluidic organoids offer a physiologically relevant model for investigating menopausal syndrome and ...
Qianyi Zhang   +4 more
wiley   +1 more source

Non‐Invasive Multidimensional Capacitive Sensing for In Vivo Traumatic Brain Injury Monitoring

open access: yesAdvanced Materials Technologies, EarlyView.
Single‐electrode, multidimensional capacitive sensors noninvasively assess cerebral autoregulation and compliance for traumatic brain injury monitoring. ABSTRACT Traumatic brain injury (TBI) is a major cause of death and disability, but invasive intracranial pressure (ICP) monitoring is risky, and current non‐invasive methods lack the resolution and ...
Shawn Kim   +8 more
wiley   +1 more source

Two‐Photon Polymerized Microvascular Environments for Multicellular Modeling of the Blood–Brain Tumor Barrier

open access: yesAdvanced Materials Technologies, EarlyView.
Modeling the blood–brain tumor barrier is challenging due to complex interactions between brain microvasculature and glioma cells. We present two‐photon polymerized 3D micro‐porous capillary‐like structures that support endothelial alignment, cytoskeletal organization, and pericyte‐endothelial‐glioma tri‐cultures.
Nastaran Barin   +9 more
wiley   +1 more source

Ultra‐Flexible Dual‐Band Organic Photodetectors for Visible and Near‐Infrared Sensing

open access: yesAdvanced Optical Materials, EarlyView.
An ultra‐flexible dual‐band organic photodetector with a total thickness of 5.6 µm for bio‐sensing is developed. It selectively detects visible and near‐infrared light with high sensitivity by switching the voltage. Peripheral oxygen saturation (SpO2) measurement is demonstrated using the device attached to a finger under a single light source by ...
Sachi Awakura   +6 more
wiley   +1 more source

TRIM47 Regulates Energy Metabolism via Glycolytic Reprogramming to Drive Hepatocellular Carcinoma Progression and Represents an Efficient Therapeutic Target

open access: yesAdvanced Science, EarlyView.
This study identifies TRIM47 as a key driver of liver cancer progression by promoting glycolysis through ubiquitin‐mediated degradation of the gluconeogenic enzyme FBP1. TRIM47 enhances glucose uptake, lactate and ATP production, and tumor growth and metastasis.
Weijie Sun   +17 more
wiley   +1 more source

Home - About - Disclaimer - Privacy