Results 261 to 270 of about 869,656 (316)

Flow‐Induced Vascular Remodeling on‐Chip: Implications for Anti‐VEGF Therapy

open access: yesAdvanced Functional Materials, EarlyView.
Flow‐induced vascular remodeling plays a critical role in network stabilization and function. Using a vasculature‐on‐chip system, this study reveals how physiological VEGF levels and flow affect vascular remodeling and provides insights into tumor vessel normalization.
Fatemeh Mirzapour‐Shafiyi   +6 more
wiley   +1 more source

Temporomandibular Disorders Treatment with Correction of Decreased Occlusal Vertical Dimension. [PDF]

open access: yesOpen Access Maced J Med Sci, 2017
Guguvcevski L   +4 more
europepmc   +1 more source

Ultrafast Room‐Temperature Nanofabrication via Ozone‐Based Gas‐Phase Metal‐Assisted Chemical Etching for High‐Performance Silicon Photodetectors

open access: yesAdvanced Functional Materials, EarlyView.
Ozone‐based gas‐phase metal‐assisted chemical etching enables unprecedented room‐temperature fabrication of high‐quality silicon nanowires. The superior oxidation potential of O3 drives rapid vertical etching (1 µm min−1) while maintaining exceptional structural integrity. The pristine nanowire surfaces enable high‐performance core‐shell photodetectors
Hyein Cho   +11 more
wiley   +1 more source

Mixed‐Dimensional 0D‐DNA‐2D Heterostructures Beyond van der Waals: A DNA‐Templated Strategy for Optoelectronic Tunability

open access: yesAdvanced Functional Materials, EarlyView.
A two‐step DNA metallization process is presented for the modular assembly of metal sulfide nanoparticles (NPs) on MoS2, with nanoscale control over their separation and ability to concomitantly assemble different kind of NPs. This allowed to tailor the photoinduced electrical response of phototransistors to different wavelengths, according to the ...
Kai Chen   +3 more
wiley   +1 more source

Transient Stiffness Patterning in Hydrogels Driven by Dissipative Mechanochemical Coupling

open access: yesAdvanced Functional Materials, EarlyView.
Force‐induced disulfide bond rupture in a polymer‐based hydrogel, coupled with chemical or electrochemical reoxidation, leads to the transient modulation of the hydrogel's stiffness properties. High spatiotemporal control is achieved by this dissipative process, enabling the development of out‐of‐equilibrium stiffness patterns and transient, dose ...
Roberto Baretta   +2 more
wiley   +1 more source

Fully Bio‐Based Epoxy Resins from Liquefied Wood for Chemically Recyclable Wood Coatings

open access: yesAdvanced Functional Materials, EarlyView.
A bio‐based and chemically recyclable epoxy resin derived from liquefied wood and its use in wood coatings is presented. The resin exhibits mechanical, thermal, and water‐resistant properties comparable to commercial coatings and can be chemically recycled and reused. This approach provides fast access to glossy and fully biobased durable wood coatings
Qisong Hu   +6 more
wiley   +1 more source

Dual Side Chain Functionalization of Small Molecule Acceptors Affords High‐Performance Organic Solar Cells With Refined Blend Morphology

open access: yesAdvanced Functional Materials, EarlyView.
A new small‐molecule acceptor (SMA‐Ph‐CF3) is developed using a dual side chain functionalization strategy that incorporates trifluoromethyl and phenyl groups. This approach enables precise tuning of blend morphology, leading to the fabrication of high‐performance organic solar cells with a power conversion efficiency of 18.5%.
Shinbee Oh   +5 more
wiley   +1 more source

Plasma‐Treated Hydrogel for Combined RONS and Chemotherapy Delivery: A Proof‐of‐Concept In Ovo

open access: yesAdvanced Functional Materials, EarlyView.
This study explores plasma‐treated hydrogels (PTH) as a new way to deliver both reactive oxygen and nitrogen species and chemotherapy (Doxorubicin) directly to tumors. In ovo tests show effects after a single dose, especially in osteosarcoma tumors. Tumor weight decrease, and a resistance‐related protein is reduced.
Milica Živanić   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy