Results 181 to 190 of about 599,016 (299)

A Robust Dual‐mode Self‐Monitoring Battery Thermal Management System via Bilayer Structural Design

open access: yesAdvanced Functional Materials, EarlyView.
An adaptive dual‐mode material capable of both evaporative cooling and photothermal preheating is developed. It achieves a cooling efficiency of 53.9%, surpassing existing evaporative cooling counterparts, and a self‐monitoring capability, making it ideal for electric vehicles, portable electronics, and grid‐scale energy storage.
Shanchi Wang   +7 more
wiley   +1 more source

Mechanism by Which Heat Treatment Influences the Acoustic Vibration Characteristics of Bamboo. [PDF]

open access: yesMaterials (Basel)
Song R   +8 more
europepmc   +1 more source

Effect of 6 weeks of whole body vibration training on total and segmental body composition in healthy young adults [PDF]

open access: bronze, 2015
Jacobo Á. Rubio‐Arias   +6 more
openalex   +1 more source

Printing Nacre‐Mimetic MXene‐Based E‐Textile Devices for Sensing and Breathing‐Pattern Recognition Using Machine Learning

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a Ti3C2Tx MXene/WPU nacre‐mimetic nanomaterial as a printable ink for direct‐write printing onto textiles‐based sensors. The resulting wearable device demonstrates high sensitivity, biocompatibility, and mechanical strength. Furthermore, NFC‐enabled humidity sensor produces time‐series data, which informs a machine learning ...
Lulu Xu   +6 more
wiley   +1 more source

Artificial Intelligence‐Driven Development in Rechargeable Battery Materials: Progress, Challenges, and Future Perspectives

open access: yesAdvanced Functional Materials, EarlyView.
AI is transforming the research paradigm of battery materials and reshaping the entire landscape of battery technology. This comprehensive review summarizes the cutting‐edge applications of AI in the advancement of battery materials, underscores the critical challenges faced in harnessing the full potential of AI, and proposes strategic guidance for ...
Qingyun Hu   +5 more
wiley   +1 more source

Atomically Dispersed Copper Electrocatalysts with Proton‐feeding Centers for Efficient Ammonia Synthesis by Nitrate Electroreduction

open access: yesAdvanced Functional Materials, EarlyView.
Rationally‐designed advanced carbon‐based single‐atom catalysts with isolated CuN2O2 active sites anchored in N,O‐doped porous carbon facilitate water dissociation and nitrate reduction, accelerating proton supply for efficient electrosynthesis of ammonia.
Yan Li   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy