Results 211 to 220 of about 911,018 (282)

A New 3D Colon on a Chip to Decipher the Influence of Mechanical Forces on the Physiological Cellular Ecosystem

open access: yesAdvanced Healthcare Materials, EarlyView.
To dissect how mechanical forces influence intestinal physiology, we developed a stretchable 3D colon‐on‐chip that integrates tunable topography, stiffness and peristalsis‐like motion within a physiologically relevant microenvironment. We showed that stretching is a dominant factor governing epithelial behavior, markedly enhancing proliferation and ...
Moencopi Bernheim‐Dennery   +10 more
wiley   +1 more source

A Tri‐Culture Heart‐on‐a‐Chip Platform With iPSC‐Derived Cardiac Cells for Predictive Cardiotoxicity Testing

open access: yesAdvanced Healthcare Materials, EarlyView.
This study presents the first entirely isogenic heart‐on‐chip, unifying cardiomyocytes, fibroblasts, and endothelial cells from a single iPSC source. The platform reveals a critical biological insight: the endothelium actively shields cardiac tissue from drug‐induced toxicity, challenging the predictive accuracy of conventional, avascular models for ...
Karine Tadevosyan   +12 more
wiley   +1 more source

Mitochondrial Transplantation via Magnetically Responsive Artificial Cells Promotes Intracerebral Hemorrhage Recovery by Supporting Microglia Immunological Homeostasis

open access: yesAdvanced Materials, Volume 37, Issue 13, April 2, 2025.
A type of magnetically responsive artificial cells (ACs) has been developed, demonstrating the loading of mitochondria and self‐enclosure processes to ensure the protection of mitochondrial transport via the bloodstream. The treatment with ACs effectively transplanted mitochondria around the lesion, thereby improving neurological recovery by supporting
Mi Zhou   +10 more
wiley   +1 more source

Biofilm‐Antagonist Ginger‐Based 3D‐Printable Photoresins for Complex Implant Designs Exhibiting Advanced Multifunctional Biomedical Applications

open access: yesAdvanced Materials, EarlyView.
This work offers unique Ginger‐based 3D‐printable resins that can print customizable high‐resolution complex designs. The customizable printing backbone of Zingerol prints also mimics various human bones' strength. Acquisition of in‐vivo biocompatibility in rat model with no severe inflammatory response, along with in‐vitro antioxidant and ex‐vivo anti‐
Simran Jindal   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy