Results 201 to 210 of about 261,480 (318)

Controlling Intestinal Organoid Polarity using Synthetic Dynamic Hydrogels Decorated with Laminin‐Derived IKVAV Peptides

open access: yesAdvanced Healthcare Materials, EarlyView.
Design rules are presented to control intestinal organoid polarity in fully synthetic hydrogels. The laminin‐derived IKVAV sequence is crucial to obtain correct intestinal organoid polarity. Increasing hydrogel dynamics further supports the growth of correctly polarized intestinal organoids, while a bulk level of stiffness (G’ ≈ 0.7 kPa) is crucial to ...
Laura Rijns   +10 more
wiley   +1 more source

Viscoelastic Behavior of the Mat of Single Crystals of Polyethylene

open access: bronze, 1964
Teruo Aramaki   +3 more
openalex   +2 more sources

Norbornene Homopolymerization Limits Cell Spreading in Thiol–Ene Photoclick Hydrogels

open access: yesAdvanced Healthcare Materials, EarlyView.
Thiol–norbornene click reactions are often used in the development of cell‐permissive 3D hydrogels. However, ene–ene crosslinks in other thiol–ene systems are known to limit permissivity. This study demonstrates the negative effects of norbornene homopolymerization on 3D cell spreading and circumvents the issue by modulating polymer degree of ...
James L. Gentry, Steven R. Caliari
wiley   +1 more source

Multimodal mechanoregulation strategies towards tissue regeneration. [PDF]

open access: yesMechanobiol Med
Yu Q, Duan Y, Zhu Z, Ji W, Zhu C, Li B.
europepmc   +1 more source

Recombinant Proteins: A Molecular Tool to Understand Marine Adhesion and to Advance Biomaterials

open access: yesAdvanced Healthcare Materials, EarlyView.
The production of recombinant proteins represents a fundamental step in the characterisation of marine invertebrate adhesives and in the development of bio‐inspired glues. The association of these proteins with other components such as ions, proteins, polysaccharides, or polymers enables the fabrication of biomaterials for various healthcare ...
Alessandra Whaite   +4 more
wiley   +1 more source

Granular Hydrogels as Modular Biomaterials: From Structural Design to Biological Responses

open access: yesAdvanced Healthcare Materials, EarlyView.
Granular hydrogels are now emerging as promising biomaterials due to their inherent microporousity, injectability, and modularity. They have shown improvements in cell viability and migration, cellular/tissue infiltration, host tissue integration, mitigated foreign body response, and tissue regeneration.
Asmasadat Vaziri   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy