Results 201 to 210 of about 1,740,867 (350)

Integration of Perovskite/Low‐Dimensional Material Heterostructures for Optoelectronics and Artificial Visual Systems

open access: yesAdvanced Functional Materials, EarlyView.
Heterojunctions combining halide perovskites with low‐dimensional materials enhance optoelectronic devices by enabling precise charge control and improving efficiency, stability, and speed. These synergies advance flexible electronics, wearable sensors, and neuromorphic computing, mimicking biological vision for real‐time image analysis and intelligent
Yu‐Jin Du   +11 more
wiley   +1 more source

The Capacity of Serum to Support Neutrophil Phagocytosis Is a Vital Host Defense Mechanism in Severely Injured Patients

open access: green, 1988
Hiram C. Polk   +4 more
openalex   +2 more sources

Enhancing Low‐Temperature Performance of Sodium‐Ion Batteries via Anion‐Solvent Interactions

open access: yesAdvanced Functional Materials, EarlyView.
DOL is introduced into electrolytes as a co‐solvent, increasing slat solubility, ion conductivity, and the de‐solvent process, and forming an anion‐rich solvent shell due to its high interaction with anion. With the above virtues, the batteries using this electrolyte exhibit excellent cycling stability at low temperatures. Abstract Sodium‐ion batteries
Cheng Zheng   +7 more
wiley   +1 more source

Vital capacity and patient controlled sevoflurane inhalation result in similar induction characteristics [PDF]

open access: bronze, 2005
Suntheralingam Yogendran   +6 more
openalex   +1 more source

Unlocking Ultra‐Long Cycle Stability of Li Metal Electrode by Separators Modified by Porous Red Phosphorus Nanosheets

open access: yesAdvanced Functional Materials, EarlyView.
Coating the standard polypropylene separator with a porous red phosphorous nanosheet greatly improves cycling performance in Li electrode cells. The phosphorus‐based surface chemistry deactivates electrolyte solvent decomposition and enhances the cleavage of F‐containing salt, resulting in an inorganic‐dominated electrolyte interphase (SEI) composition
Jiangpeng Wang   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy