Results 291 to 300 of about 5,335,329 (375)
This study introduces a controllable degradation system for Mg‐based biomaterials using sputtering technology, marking a significant advancement in nerve regeneration research. The Mg‐sputtered nerve conduits demonstrate enhanced biocompatibility, biofunctionality, mechanical compatibility, and precise magnesium release, resulting in improved axonal ...
Hyewon Kim+12 more
wiley +1 more source
AIMSPec‐LoC is a novel lab‐on‐a‐chip platform integrating size‐based extracellular vesicle (EVs) separation with label‐free Raman spectroscopy and AI‐powered classification via SKiNET. This high‐throughput, portable system enables real‐time, multiplexed molecular fingerprinting of EVs from biofluids, offering transformative potential for early, non ...
Emma Buchan+3 more
wiley +1 more source
A flexible electrode loaded with a carbon nanowire network (CC@C‐NWN) is developed for electrochemically generating reactive chlorine species (RCS) from abundant chloride ions in body fluids for tumor therapy. CC@C‐NWN enhances chlorine evolution, inducing redox dysregulation and synergistic apoptosis‐ferroptosis in tumor cells.
Cuinan Jiang+10 more
wiley +1 more source
Silicon Nanowire Mats Enable Advanced Bioelectrical Recordings in Primary DRG Cell Cultures
SiNW mat‐based MEA (NW_MEA) enables continuous intracellular recordings from neurons in primary rat DRG cell cultures, identifying C‐fiber nociceptors. Supported by an astrocyte feeder layer, SiNW mat promotes DRG neuron and glial cell growth, preserving in vivo‐like cell characteristics and allowing drug‐modulated activity monitoring.
Ivano Lucarini+12 more
wiley +1 more source
Engineered exosome‐based heavy atom‐free nanosensitizers are developed for safe and targeted sono‐photodynamic therapy of solid tumors. The IR820‐TPE‐loaded, biotin‐conjugated exosomes (IR820‐TPE@B‐Exo) demonstrate significant promise for NIR fluorescence imaging‐guided sono‐photodynamic cancer therapy.
Van‐Nghia Nguyen+16 more
wiley +1 more source
Perovskite Light‐Emitting Diodes with Quantum Wires and Nanorods
This review focuses on low‐dimensional perovskite materials and discusses their applications in light‐emitting diodes (LEDs). Special attention is given to the introduction of perovskite quantum wires and nanorods, two unique types of one‐dimensional (1D) materials, and their interesting optoelectronic properties.
Qianpeng Zhang+11 more
wiley +1 more source
Computational Simulations of Metal–Organic Frameworks to Enhance Adsorption Applications
This review highlights the significance of molecular simulations in expanding the understanding of metal–organic frameworks (MOFs) and improving their gas adsorption applications. The historical development and implementation of molecular simulations in the MOF field are given, high‐throughput computational screening studies used to unlock the ...
Hilal Daglar+3 more
wiley +1 more source
In this review, the recent development of deep‐blue (≤465 nm) perovskite light‐emitting diodes (PeLEDs) are summarized, using different perovskite nanomaterials, including nanocrystals (NCs), quantum dots (QDs), nanoplatelets (NPLs), quasi‐2D thin film, 3D bulk thin film, as well as lead‐free perovskite nanomaterials.
Pui Kei Ko+6 more
wiley +1 more source
Emerging Opportunities of Colloidal Quantum Dots for Photocatalytic Organic Transformations
Colloidal quantum dots (QDs) have gained significant attention as photocatalysts in organic transformations in recent years. This review highlights QDs’ distinctive features, including the quantum size effect, compositional and structural diversity, tunable surface chemistry, and photophysics.
Qinxuan Cao+4 more
wiley +1 more source
[Vital capacity and forced vital capacity].
openaire +1 more source