Results 61 to 70 of about 74,703 (311)
Background: This quasi-experimental comparative group study examined vocabulary knowledge and its associations with other language skills in Greek-speaking children with high-functioning Autism Spectrum Disorder and mild language impairment (HF-ASDLI ...
Vasiliki Zarokanellou +4 more
doaj +1 more source
ABSTRACT This paper examines the determinants of generative AI (GenAI) knowledge and usage among agricultural extension professionals. Drawing on survey data from agricultural extension personnel in Tennessee, we employ regression analyses and latent Dirichlet allocation (LDA) for topic modeling of open‐ended responses to study the knowledge and usage ...
Abdelaziz Lawani +3 more
wiley +1 more source
Third-Grade English Second Language teachers’ vocabulary development practices
Background: This article investigated the potential of Grade 3 English Second Language (ESL) teachers’ vocabulary development practices to equip learners in English-deprived environments with English vocabulary requisite for transition to Grade 4 where ...
Jabulani Sibanda, Jean Baxen
doaj +1 more source
Named entity recognition pipeline for knowledge extraction from scientific literature. Machine learning interatomic potential (MLIP) is an emerging technique that has helped achieve molecular dynamics simulations with unprecedented balance between efficiency and accuracy. Recently, the body of MLIP literature has been growing rapidly, which propels the
Bowen Zheng, Grace X. Gu
wiley +1 more source
Vocabulary Development of Junior Teens
The article deals with the communicative competence formation of young adolescents in the secondary school at the Russian language lessons. The author maintains that the key element of the above problem is the vocabulary development guaranteeing both ...
L. V. Nikonova
doaj +1 more source
CrossMatAgent is a multi‐agent framework that combines large language models and diffusion‐based generative AI to automate metamaterial design. By coordinating task‐specific agents—such as describer, architect, and builder—it transforms user‐provided image prompts into high‐fidelity, printable lattice patterns.
Jie Tian +12 more
wiley +1 more source
Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang +4 more
wiley +1 more source
Two‐photon polymerization enables high‐resolution microfabrication, but performing alignment when printing multiple structures is difficult. Here, we present a fast, robust, and open‐source protocol for automated alignment on Nanoscribe systems. Achieving ≈0.4 μm accuracy in under 5 s, our protocol reduces time and error in multimaterial printing. This
Daniel Maher +4 more
wiley +1 more source
Predictive models successfully screen nanoparticles for toxicity and cellular uptake. Yet, complex biological dynamics and sparse, nonstandardized data limit their accuracy. The field urgently needs integrated artificial intelligence/machine learning, systems biology, and open‐access data protocols to bridge the gap between materials science and safe ...
Mariya L. Ivanova +4 more
wiley +1 more source

