Results 211 to 220 of about 211,490 (276)
Attributes of residual neural networks for modeling fractional differential equations. [PDF]
Agarwal S, Mishra LN.
europepmc +1 more source
Regularity and wave study of an advection-diffusion-reaction equation. [PDF]
Akgül A +5 more
europepmc +1 more source
Transmission dynamics and stability analysis of fractional HIV and AIDS epidemic model with antiretroviral therapy. [PDF]
Huang L +4 more
europepmc +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
Linear Volterra Integral Equations
Acta Mathematicae Applicatae Sinica, English Series, 2002The authors apply the Kurzweil-Henstock integral formalism to give existence theorems for linear Volterra equations \[ x(t)+^{\ast}\int_{[a,t]}\alpha(s)x(s)\,ds=f(t),\qquad t\in[ a,b],\tag{1} \] where the functions \(x,f\)\ have values in the Banach space \(X\).
Federson, M., Bianconi, R., Barbanti, L.
openaire +2 more sources
A volterra-type integral equation
Ukrainian Mathematical Journal, 1989See the review in Zbl 0653.45005.
Ashirov, S., Mamedov, Ya. D.
openaire +2 more sources
On a Nonlinear Volterra Integral Equation in Two Variables
Sarajevo Journal of MathematicsThe aim of this paper is to study the existence, uniqueness and other properties of solutions of a certain nonlinear Volterra integral equation in two variables. The fundamental tools employed in the analysis are based on applications of the Banach fixed
B. Pachpatte
semanticscholar +1 more source
2011
This chapter is devoted to spectral approximations of the Volterra integral equation (VIE): \(y(t)+\int_{o}^{t}R(t,\tau)y(\tau)=f(t),\,\,t\epsilon[0,T],\)
Jie Shen, Tao Tang, Li-Lian Wang
openaire +2 more sources
This chapter is devoted to spectral approximations of the Volterra integral equation (VIE): \(y(t)+\int_{o}^{t}R(t,\tau)y(\tau)=f(t),\,\,t\epsilon[0,T],\)
Jie Shen, Tao Tang, Li-Lian Wang
openaire +2 more sources
1999
In this chapter first we shall follow Meehan and O’Regan [213,215] and present results which guarantee the existence of nonnegative solutions of the Volterra integral equation $$y\left( t \right) = h\left( t \right) - \int_0^t {k\left( {t,s} \right)} g\left( {s,y\left( s \right)} \right)ds,t \in {\text{ }}\left[ 0 \right.
Ravi P. Agarwal +2 more
openaire +1 more source
In this chapter first we shall follow Meehan and O’Regan [213,215] and present results which guarantee the existence of nonnegative solutions of the Volterra integral equation $$y\left( t \right) = h\left( t \right) - \int_0^t {k\left( {t,s} \right)} g\left( {s,y\left( s \right)} \right)ds,t \in {\text{ }}\left[ 0 \right.
Ravi P. Agarwal +2 more
openaire +1 more source
Journal of Soviet Mathematics, 1979
One presents a survey of the investigations in the theory of Volterra integral equations, reviewed in Ref. Zh. “Mat.” between 1966–1976.
openaire +1 more source
One presents a survey of the investigations in the theory of Volterra integral equations, reviewed in Ref. Zh. “Mat.” between 1966–1976.
openaire +1 more source

