Results 211 to 220 of about 24,381 (244)
Some of the next articles are maybe not open access.

Volterra integral equations

Journal of Soviet Mathematics, 1979
One presents a survey of the investigations in the theory of Volterra integral equations, reviewed in Ref. Zh. “Mat.” between 1966–1976.
openaire   +2 more sources

Linear Volterra Integral Equations

Acta Mathematicae Applicatae Sinica, English Series, 2002
The authors apply the Kurzweil-Henstock integral formalism to give existence theorems for linear Volterra equations \[ x(t)+^{\ast}\int_{[a,t]}\alpha(s)x(s)\,ds=f(t),\qquad t\in[ a,b],\tag{1} \] where the functions \(x,f\)\ have values in the Banach space \(X\).
Luciano Barbanti   +2 more
openaire   +3 more sources

A volterra-type integral equation

Ukrainian Mathematical Journal, 1989
See the review in Zbl 0653.45005.
S. Ashirov, Ya. D. Mamedov
openaire   +3 more sources

Volterra Integral Equations

2011
This chapter is devoted to spectral approximations of the Volterra integral equation (VIE): \(y(t)+\int_{o}^{t}R(t,\tau)y(\tau)=f(t),\,\,t\epsilon[0,T],\)
Li-Lian Wang, Tao Tang, Jie Shen
openaire   +4 more sources

Volterra Integral Equations

1999
In this chapter first we shall follow Meehan and O’Regan [213,215] and present results which guarantee the existence of nonnegative solutions of the Volterra integral equation $$y\left( t \right) = h\left( t \right) - \int_0^t {k\left( {t,s} \right)} g\left( {s,y\left( s \right)} \right)ds,t \in {\text{ }}\left[ 0 \right.
Donal O'Regan   +2 more
openaire   +2 more sources

Volterra Integral Equations [PDF]

open access: possible, 1995
As shown by equations (1.1.1–2), there is a close relationship between ordinary differential equations and Volterra integral equations. First, we discuss the unique solvability. Afterwards, in §2.1.2, we discuss the regularity of the solution.
openaire   +1 more source

On a random Volterra integral equation

Mathematical Systems Theory, 1973
Tsokos [12] showed the existence of a unique random solution of the random Volterra integral equation (*)x(t; ω) = h(t; ω) + ∫ k(t, τ; ω)f(τ, x(τ; ω)) dτ, whereω ∈ Ω, the supporting set of a probability measure space (Ω,A, P)
openaire   +2 more sources

On Volterra-Fredholm integral equations

Periodica Mathematica Hungarica, 1993
The Ważewski method associated with the convergence of successive approximations is used in order to obtain existence and uniqueness results for the functional-integral equation of Volterra-Fredholm type of the form \[ \begin{multlined} x(t)=F \Biggl( t,x(t), \int_ 0^ t f_ 1(t,s,x(s))ds,\dots, \int_ 0^ t f_ n(t,s,x(s))ds,\\ \int_ 0^ T g_ 1(t,s,x(s))ds,\
openaire   +2 more sources

Volterra Integral Equations

2012
In this chapter, our attention is devoted to the Volterra integral equation of the second kindwhich assumes the form $$\phi (x) = f(x) + \lambda \,{\int \nolimits }_{a}^{x}\,K(x,t)\,\phi (t)\,\mathrm{d}t.$$ (4.1) Volterra integral equations differ from Fredholm integral equations in that the upper limit of integration is the variable x ...
openaire   +2 more sources

On a weakly singular Volterra integral equation

CALCOLO, 1981
The need for providing reliable numerical methods for the solution of weakly singular Volterra integral equations of first kind stems from the fact that they are connected to important problems in the theory and applications of stochastic processes. In the first section the above problems and some peculiarities of such equations are briefly sketched ...
E. M. De Griffi, L. F. Favella
openaire   +4 more sources

Home - About - Disclaimer - Privacy