Results 201 to 210 of about 5,404 (245)
Some of the next articles are maybe not open access.
A volterra-type integral equation
Ukrainian Mathematical Journal, 1989See the review in Zbl 0653.45005.
Ashirov, S., Mamedov, Ya. D.
openaire +2 more sources
Journal of Soviet Mathematics, 1979
One presents a survey of the investigations in the theory of Volterra integral equations, reviewed in Ref. Zh. “Mat.” between 1966–1976.
openaire +1 more source
One presents a survey of the investigations in the theory of Volterra integral equations, reviewed in Ref. Zh. “Mat.” between 1966–1976.
openaire +1 more source
Volterra Integral Dynamic Equations
2020In this chapter, we apply the concept of resolvent that we developed in Sect. 1.4.1 for vector Volterra integral dynamic equations and show the boundedness of solutions. The resolvent is an abstract term which makes it difficult, if not impossible, to make efficient use of it. However, by the help of Lyapunov functionals and variation of parameters, we
Murat Adıvar, Youssef N. Raffoul
openaire +1 more source
2012
In this chapter, our attention is devoted to the Volterra integral equation of the second kindwhich assumes the form $$\phi (x) = f(x) + \lambda \,{\int \nolimits }_{a}^{x}\,K(x,t)\,\phi (t)\,\mathrm{d}t.$$ (4.1) Volterra integral equations differ from Fredholm integral equations in that the upper limit of integration is the variable x ...
openaire +1 more source
In this chapter, our attention is devoted to the Volterra integral equation of the second kindwhich assumes the form $$\phi (x) = f(x) + \lambda \,{\int \nolimits }_{a}^{x}\,K(x,t)\,\phi (t)\,\mathrm{d}t.$$ (4.1) Volterra integral equations differ from Fredholm integral equations in that the upper limit of integration is the variable x ...
openaire +1 more source
Singularly Perturbed Volterra Integral Equations II
SIAM Journal on Applied Mathematics, 1987The authors extend the formal methodology for the asymptotic analysis of singularly perturbed Volterra integral equations developed by themselves [ibid. 47, 1-14 (1987; Zbl 0616.45009)] to several problems of the form \[ \epsilon (a(\epsilon)u'(t)+b(\epsilon)u(t))=\int^{t}_{0}k(t,s;\epsilon)f[u(s),s ;\epsilon]\quad ds+f(t;\epsilon),\quad t\geq 0 ...
Angell, J. S., Olmstead, W. E.
openaire +2 more sources
2017
This book offers a comprehensive introduction to the theory of linear and nonlinear Volterra integral equations (VIEs), ranging from Volterra's fundamental contributions and the resulting classical theory to more recent developments that include Volterra functional integral equations with various kinds of delays, VIEs with highly oscillatory kernels ...
openaire +1 more source
This book offers a comprehensive introduction to the theory of linear and nonlinear Volterra integral equations (VIEs), ranging from Volterra's fundamental contributions and the resulting classical theory to more recent developments that include Volterra functional integral equations with various kinds of delays, VIEs with highly oscillatory kernels ...
openaire +1 more source
1995
As shown by equations (1.1.1–2), there is a close relationship between ordinary differential equations and Volterra integral equations. First, we discuss the unique solvability. Afterwards, in §2.1.2, we discuss the regularity of the solution.
openaire +1 more source
As shown by equations (1.1.1–2), there is a close relationship between ordinary differential equations and Volterra integral equations. First, we discuss the unique solvability. Afterwards, in §2.1.2, we discuss the regularity of the solution.
openaire +1 more source
1970
In this chapter we investigate operator equations and inequalities for functions of one real variable. Our particular objective here is nonlinear Volterra integral equations and ordinary differential equations. Unless explicitly stated otherwise, the Lebesgue concept of integral is always presupposed.
openaire +1 more source
In this chapter we investigate operator equations and inequalities for functions of one real variable. Our particular objective here is nonlinear Volterra integral equations and ordinary differential equations. Unless explicitly stated otherwise, the Lebesgue concept of integral is always presupposed.
openaire +1 more source
2016
In this chapter, we conducted a thorough examination of the Volterra integral equation of the second kind for an arbitrary real parameter λ, assuming that the free term f (x) is real-valued and continuous on the interval [a, b] and that the kernel K(x, t) is real-valued, continuous, and separable on the square Q(a, b) = {(x, t): [a, b] × [a, b]}.
openaire +1 more source
In this chapter, we conducted a thorough examination of the Volterra integral equation of the second kind for an arbitrary real parameter λ, assuming that the free term f (x) is real-valued and continuous on the interval [a, b] and that the kernel K(x, t) is real-valued, continuous, and separable on the square Q(a, b) = {(x, t): [a, b] × [a, b]}.
openaire +1 more source
$L^2 $ Solutions of Volterra Integral Equations
SIAM Journal on Mathematical Analysis, 1979The existence of a unique $L^2 [0,T;H]$ solution of the equation $u(t) + \int_0^t {a(t - s)g(u(s))ds \ni f(t)} $ is shown for any $L^2 [0,T;H]$ function $f(t)$ where g is any maximal monotone operator satisfying a linear growth condition.
Kiffe, T., Stecher, M.
openaire +2 more sources

