Results 231 to 240 of about 209,094 (283)
Some of the next articles are maybe not open access.
Journal of Soviet Mathematics, 1979
One presents a survey of the investigations in the theory of Volterra integral equations, reviewed in Ref. Zh. “Mat.” between 1966–1976.
openaire +2 more sources
One presents a survey of the investigations in the theory of Volterra integral equations, reviewed in Ref. Zh. “Mat.” between 1966–1976.
openaire +2 more sources
Linear Volterra Integral Equations
Acta Mathematicae Applicatae Sinica, English Series, 2002The authors apply the Kurzweil-Henstock integral formalism to give existence theorems for linear Volterra equations \[ x(t)+^{\ast}\int_{[a,t]}\alpha(s)x(s)\,ds=f(t),\qquad t\in[ a,b],\tag{1} \] where the functions \(x,f\)\ have values in the Banach space \(X\).
Luciano Barbanti+2 more
openaire +3 more sources
International journal of numerical modelling, 2019
In this paper, orthonormal Bernoulli collocation method has been developed to obtain the approximate solution of linear singular stochastic Itô‐Volterra integral equations.
Nasrin Samadyar, Farshid Mirzaee
semanticscholar +1 more source
In this paper, orthonormal Bernoulli collocation method has been developed to obtain the approximate solution of linear singular stochastic Itô‐Volterra integral equations.
Nasrin Samadyar, Farshid Mirzaee
semanticscholar +1 more source
A volterra-type integral equation
Ukrainian Mathematical Journal, 1989See the review in Zbl 0653.45005.
S. Ashirov, Ya. D. Mamedov
openaire +3 more sources
Multidiscipline Modeling in Materials and Structures, 2019
Purpose The purpose of this paper is to develop a new method based on operational matrices of Bernoulli wavelet for solving linear stochastic Itô-Volterra integral equations, numerically. Design/methodology/approach For this aim, Bernoulli polynomials
Farshid Mirzaee, Nasrin Samadyar
semanticscholar +1 more source
Purpose The purpose of this paper is to develop a new method based on operational matrices of Bernoulli wavelet for solving linear stochastic Itô-Volterra integral equations, numerically. Design/methodology/approach For this aim, Bernoulli polynomials
Farshid Mirzaee, Nasrin Samadyar
semanticscholar +1 more source
2011
This chapter is devoted to spectral approximations of the Volterra integral equation (VIE): \(y(t)+\int_{o}^{t}R(t,\tau)y(\tau)=f(t),\,\,t\epsilon[0,T],\)
Li-Lian Wang, Tao Tang, Jie Shen
openaire +4 more sources
This chapter is devoted to spectral approximations of the Volterra integral equation (VIE): \(y(t)+\int_{o}^{t}R(t,\tau)y(\tau)=f(t),\,\,t\epsilon[0,T],\)
Li-Lian Wang, Tao Tang, Jie Shen
openaire +4 more sources
SIAM Journal on Numerical Analysis, 2019
Collocation solutions by globally continuous piecewise polynomials to second-kind Volterra integral equations (VIEs) with smooth kernels are uniformly convergent only for certain sets of collocatio...
Hui Liang, H. Brunner
semanticscholar +1 more source
Collocation solutions by globally continuous piecewise polynomials to second-kind Volterra integral equations (VIEs) with smooth kernels are uniformly convergent only for certain sets of collocatio...
Hui Liang, H. Brunner
semanticscholar +1 more source
1999
In this chapter first we shall follow Meehan and O’Regan [213,215] and present results which guarantee the existence of nonnegative solutions of the Volterra integral equation $$y\left( t \right) = h\left( t \right) - \int_0^t {k\left( {t,s} \right)} g\left( {s,y\left( s \right)} \right)ds,t \in {\text{ }}\left[ 0 \right.
Donal O'Regan+2 more
openaire +2 more sources
In this chapter first we shall follow Meehan and O’Regan [213,215] and present results which guarantee the existence of nonnegative solutions of the Volterra integral equation $$y\left( t \right) = h\left( t \right) - \int_0^t {k\left( {t,s} \right)} g\left( {s,y\left( s \right)} \right)ds,t \in {\text{ }}\left[ 0 \right.
Donal O'Regan+2 more
openaire +2 more sources
On the existence of solutions of non-linear 2D Volterra integral equations in a Banach Space
RACSAM, 2022Harsh V. S. Chauhan+3 more
semanticscholar +1 more source
Volterra Integral Equations [PDF]
As shown by equations (1.1.1–2), there is a close relationship between ordinary differential equations and Volterra integral equations. First, we discuss the unique solvability. Afterwards, in §2.1.2, we discuss the regularity of the solution.
openaire +1 more source