Results 131 to 140 of about 350,954 (226)
A novel machine learning approach classifies macrophage phenotypes with up to 98% accuracy using only nuclear morphology from DAPI‐stained images. Bypassing traditional surface markers, the method proves robust even on complex textured biomaterial surfaces. It offers a simpler, faster alternative for studying macrophage behavior in various experimental
Oleh Mezhenskyi +5 more
wiley +1 more source
Data Warehouse And Data Mining – Neccessity Or Useless Investment [PDF]
The organization has optimized databases which are used in current operations and also used as a part of decision support. What is the next step?
Emil BURTESCU
core
Electrospinning allows the fabrication of fibrous 3D cotton‐wool‐like scaffolds for tissue engineering. Optimizing this process traditionally relies on trial‐and‐error approaches, and artificial intelligence (AI)‐based tools can support it, with the prediction of fiber properties. This work uses machine learning to classify and predict the structure of
Paolo D’Elia +3 more
wiley +1 more source
A crystal graph neural network based on the attention mechanism is proposed in this work. The model dynamically weights features through the attention mechanism, enabling precise prediction of properties of material from structural features. Here, taking Janus III–VI van der Waals heterostructures as a representative case, the properties have been ...
Yudong Shi +7 more
wiley +1 more source
On the Determinations of Class-Based Storage Assignments in AS/RS having two I/O Locations [PDF]
This paper presents the use and extension of a geometrical-based algorithmic approach for determining the expected S/R machine cycle times, and therefore warehouse throughput, for class-based storage assignment layouts in an AS/RS.The approach was ...
Ashayeri, J. +3 more
core +1 more source
To integrate surface analysis into materials discovery workflows, Gaussian process regression is used to accurately predict surface compositions from rapidly acquired volume composition data (obtained by energy‐dispersive X‐ray spectroscopy), drastically reducing the number of required surface measurements on thin‐film materials libraries.
Felix Thelen +2 more
wiley +1 more source
CrossMatAgent is a multi‐agent framework that combines large language models and diffusion‐based generative AI to automate metamaterial design. By coordinating task‐specific agents—such as describer, architect, and builder—it transforms user‐provided image prompts into high‐fidelity, printable lattice patterns.
Jie Tian +12 more
wiley +1 more source
The Necessity of Dynamic Workflow Managers for Advancing Self‐Driving Labs and Optimizers
We assess the maturity and integration readiness of key methodologies for Materials Acceleration Platforms, highlighting the need for dynamic workflow managers. Demonstrating this, we integrate PerQueue into a color‐mixing robot, showing how flexible orchestration improves coordination and optimization.
Simon K. Steensen +6 more
wiley +1 more source
This study presents an automated system integrating a capillary force gripper and machine learning‐based object detection for sorting and placing submillimeter objects. The system achieved stable and simultaneous manipulation of four object types, with an average task time of 86.0 seconds and a positioning error of 157 ± 84 µm, highlighting its ...
Satoshi Ando +4 more
wiley +1 more source
This work presents a novel generative artificial intelligence (AI) framework for inverse alloy design through operations (optimization and diffusion) within learned compact latent space from variational autoencoder (VAE). The proposed work addresses challenges of limited data, nonuniqueness solutions, and high‐dimensional spaces.
Mohammad Abu‐Mualla +4 more
wiley +1 more source

