A Machine Learning Model for Interpretable PECVD Deposition Rate Prediction
This study develops six machine learning models (k‐nearest neighbors, support vector regression, decision tree, random forest, CatBoost, and backpropagation neural network) to predict SiNx deposition rates in plasma‐enhanced chemical vapor deposition using hybrid production and simulation data.
Yuxuan Zhai +8 more
wiley +1 more source
Selection of Rental Warehouse Using Analytical Hierarchy Process (AHP) Method Based on the Area Requirement Evaluation and the Design of Rental Warehouse Layout Using ABS Analysis and Office Layout Technique at PT. XYZ [PDF]
A.Usman A.Usman +3 more
openalex +1 more source
A Comprehensive Assessment and Benchmark Study of Large Atomistic Foundation Models for Phonons
We benchmark six large atomistic foundation models on 2429 crystalline materials for phonon transport properties. The rapid development of universal machine learning potentials (uMLPs) has enabled efficient, accurate predictions of diverse material properties across broad chemical spaces.
Md Zaibul Anam +5 more
wiley +1 more source
Biomarker associated trends in mortality in myocardial infarction as an example of clinical data warehouse analyses - new opportunities of data-driven cardiovascular research [PDF]
Jin Geng +9 more
openalex +1 more source
Memristors based on trimethylsulfonium (phenanthroline)tetraiodobismuthate have been utilised as a nonlinear node in a delayed feedback reservoir. This system allowed an efficient classification of acoustic signals, namely differentiation of vocalisation of the brushtail possum (Trichosurus vulpecula).
Ewelina Cechosz +4 more
wiley +1 more source
Automated procedural analysis is recognized as one of the major game changers for robotic surgery. Meaning digital analysis needs to replace the manual assessments that set todays standard. Mechanical robotic‐instrument tracking enables the derivation of quantitative kinematic metrics that support behavior‐based workflow segmentation into distinct ...
Kateryna Pirkovets +4 more
wiley +1 more source
PERSISTENT STAGING AREA MODELS FOR DATA WAREHOUSES
Vladan Jovanović +3 more
openalex +1 more source
This work establishes a correlation between solvent properties and the charge transport performance of solution‐processed organic thin films through interpretable machine learning. Strong dispersion interactions (δD), moderate hydrogen bonding (δH), closely matching and compatible with the solute (quadruple thiophene), and a small molar volume (MolVol)
Tianhao Tan, Lian Duan, Dong Wang
wiley +1 more source
Topology‐Aware Machine Learning for High‐Throughput Screening of MOFs in C8 Aromatic Separation
We screened 15,335 Computation‐Ready, Experimental Metal–Organic Frameworks (CoRE‐MOFs) using a topology‐aware machine learning (ML) model that integrates structural, chemical, pore‐size, and topological descriptors. Top‐performing MOFs exhibit aromatic‐enriched cavities and open metal sites that enable π–π and C–H···π interactions, serving as ...
Yu Li, Honglin Li, Jialu Li, Wan‐Lu Li
wiley +1 more source
Deep Learning‐Assisted Design of Mechanical Metamaterials
This review examines the role of data‐driven deep learning methodologies in advancing mechanical metamaterial design, focusing on the specific methodologies, applications, challenges, and outlooks of this field. Mechanical metamaterials (MMs), characterized by their extraordinary mechanical behaviors derived from architected microstructures, have ...
Zisheng Zong +5 more
wiley +1 more source

